SI	N	О.	:

		4		וע	J	JI	ַ ער	L &	
egister Iumber	:							•	

2017

BASICS OF ENGINEERING (Degree Standard)

Time	A11	owed	• 3	Ho	urel
111116	AH	uweu		пu	цгы

[Maximum Marks: 300

人区DATA

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer the candidates are requested to check whether all the questions are there and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination it will not be replaced.
- 3. Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Invigilator to mark the answers.
- 6. You will also encode your Register Number, Subject Code, Question Booklet Sl. No. etc. with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. The sheet before the last page of the Question Booklet can be used for Rough Work.
- 11. Do not tick-mark or mark the answers in the Question Booklet.
- 12. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

- 1. The volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0 is
 - (A) 8*n*

162

(C) 4π

- (D) 2*n*
- 2. A unit normal vector of the surface $f(x,y,z) = 4(x^2 + y^2) z^2$ at the point (1,0,2) is
 - (A) $\frac{2}{\sqrt{5}}\vec{i} + \frac{1}{\sqrt{5}}\vec{j}$

 $\frac{2}{\sqrt{5}}\vec{i} - \frac{1}{\sqrt{5}}\vec{k}$

(C) $\frac{2}{\sqrt{5}}\vec{i} + \frac{1}{\sqrt{5}}\vec{k}$

- (D) $-\frac{2}{\sqrt{5}}\vec{i} \frac{1}{\sqrt{5}}\vec{j}$.
- 3. The area of the region bounded by the curve $y = xe^{-x}$ and the x axis from x = 0 to x = 4 is
 - (A) $1-4e^{-5}$

(B) $1 + 5e^{-4}$

 $(2) 1 - 5e^{-4}$

- (D) $1+4e^{-5}$
- 4. The unit normal to the surface $x^2y + 2xy^2 = 8$ at the point (1,0,2) is
 - (A) $8\overline{i} \overline{j} 8\overline{k}/\sqrt{129}$

 $8\overline{i} + \overline{j} + 8\overline{k}/\sqrt{129}$

(C) $8\overline{i} + \overline{j} + 8\overline{k}/\sqrt{125}$

- (D) $-8i \bar{j} 8\bar{k} / \sqrt{129}$
- By using the Stoke's theorem the value of $\oint_C [e^x dx + 2y dy dz]$, where C is the curve

$$x^2 + y^2 = 4, z = 2$$
, is

(1)

(B)

(C) 2π

- (D) $\pi/2$
- 6. The image of the interior of the unit circle $|z| \le 1$ under the mapping w = (1+i)z + 2 i is the
 - (A) Exterior of the circle $|w (2 i)| = \sqrt{2}$
 - (B) Interior of the circle $|w (2+i)| = \sqrt{2}$
 - Interior of the circle $|w (2 i)| = \sqrt{2}$
 - (D) Exterior of the circle $|w (2 + i)| = \sqrt{2}$

7. The Laplace transform of the function
$$f(t) = e^{-4t} t \sin 3t$$
 is

$$(A) \qquad \frac{6s}{(s^2+9)^2}$$

(B)
$$\frac{6(s+4)}{(s+4)^2+9}$$

(C)
$$\frac{6(s+4)}{[s+4+9]^2}$$

$$\frac{6(s+4)}{(s+4)^2+9^{2}}$$

8. The Laplace transform of
$$\frac{e^{-2t} - e^{-3t}}{t}$$
 is _____

$$\log \frac{s+3}{s+2}$$

(B)
$$\log \frac{s-3}{s-3}$$

(C)
$$\log \frac{s+2}{s+3}$$

(D)
$$\log \frac{s+2}{s+1}$$

9. Which among the following bonds are not preferred in explosives

(i)
$$C = C$$

(iv)
$$C = N$$

10. For which among the following substances, the degree of dissociation (α) is minimum in 1 M aqueous solutions?

11. Stainless steel is resistant to corrosion because it is covered by

- (A) a dense and tough layer of iron oxide
 - a dense and tough layer of chromium oxide
- (C) a strongly adherent magnesium oxide
- (D) a brittle layer of nickel oxide

12. Which among the following polymers would have the highest glass transition temperature?

(A) Polypropylene
$$(CH_2 - CH)_n$$

 CH_3

(B) Polyethylene $(CH_2 - CH_2)_n$

Polystyrene (CH₂ – CH)_n
$$C_6H_5$$

(D) Polyvinyl chloride $(CH_2 - CH)_n$

13.	The death of microorganisms upon the addition of chlorine to water is proposed to be due to the action of ———— with the enzymes and membranes of the organisms.								
	(A)	Chlorine	(B)	Hypochlorous acid					
	(C)	Chloramines		Hypochlorite ions	· .				
14.	Whi	ch among the following we	ould result in three	dimensional polymers?	,				
	(i)	Reaction between pheno	l and formaldehyde						
	(ii)	Reaction between adipic	acid and hexameth	ylene diamine					
	(iii)	Reaction between styren	e and divinyl benze	ene	•				
	(iv)	Ring opening polymerisa	ation of caprolactum	· .					
	(A)	(i) and (ii) only							
	(B)	(ii) and (iv) only			•				
	100	(i) and (iii) only							
	(D)	(iv) only	4						
15.	Pref	erential corrosion of wire	fencing at the place	s where the wires cross	is due to				
	(A)	Galvanic corrosion							
	(B)	Inter granular corrosio							
	401	Differential aeration co	orrosion						
	(D)	Erosion corrosion		•					
		•			•				
16.	The	metal which can be prote	cted from corrosion	by subjecting it to anodi	zation is				
	(A)	Fe	(B)	Zn					
	(C)	Cu		Al					
		•							
			:		•				
17.	Idei	ntify the special property							
	(A)	retaining hardness at 1	red heat	· ·					
	9	zero coefficient of expa	nsion		·				
	(C)	corrosion resistance							
	(D)	less brittleness							
K	•		5	er e	AEBOE/17 [Turn over				

18.	Supp	oly the passive form for the following a	entenc	ee:
	We s	hall finish the whole work by six O'clo	ck	
	(A)	The whole work will be finished by	six O'cl	ock
	(B)	The whole work will be finished		
	(C)	By six O'clock we will finish the who	ole wor	k
	0	The whole work will be finished by		
19.	Fill i	n the blank with the correct phrase.		
10.		girl ——— is very pretty.		
	(A)	has long hair	(T) \	
			(B)	who has a long hair
	(C)	in long hair	(40)	with long hair
			~	,
20.		n the blank with correct modal verb —		— you mind giving me the pen?
	(A)	should	43)	would
	(C)	could	(D)	must
21.	Give	the interrogative form of the following	sente:	nce.
	Their	glory can never fade.		
	(A)	when will their glory fade?	(3)	when can their glory fade?
	(C)	when would their glory fade?	(D)	when could their glory fade?
22.	Selec	t the appropriate word out of the give	n liat tl	hat fits in the definition.
		round to many places or persons.	и пос и	nat his fir the definitions.
	(A)	Circular	(B)	Circumferential
	(C)	Encyclical	(D)	
	O /	2	(D)	Encyclopedic
	1701			
23.	The c	•	nthesis	of styrene based ion exchange resins is
	(D)	divinyl benzene		
	(B)	formaldehyde		
	(C)	ethylene	-	
	(D)	a dicarboxylic acid		
AEB	OE/17	- 6	;	

24.	Match the words under	Column A with	the words under	Column B to form	compound words:
-----	-----------------------	---------------	-----------------	------------------	-----------------

	Colur	nn A			Column B
(a)	key			1.	humoured
(b)	boy			2.	board
(c)	good			3.	forgotten
(d)	long			4.	hood
	(a).	(b)	(c)	(d)	
(A)	2	1	4	3	•
(B)	1 .	4	2	3	
10%	2	4	1	3	
(M)	2	4	'n	9	

25. Choose the option with the right meaning of the idiom given below:

to prick one's ears

- to become alert
- (B) to pull together
- (C) to conclude from the obvious facts
- (D) to deliberate upon

26. Fill in the blanks with the correct question tag.

It's very hot today, ----

- (A) is it?
- (B) are it?
- isn't it?
- (D) doesn't it?

27. Choose the correct passive form of the sentence given below:

My cousin has drawn this picture.

- This picture has been drawn by my cousin
- (B) This picture is drawn by my cousin
- (C) This picture had been drawn by my cousin
- (D) This picture was drawn by my cousin

28.	The s	equence of events that happens during	a typi	ical fetch operation is	
-		$PC \longrightarrow MAR \longrightarrow Memory \longrightarrow$			
	(B)	$PC \longrightarrow Memory \longrightarrow MDR \longrightarrow$			
	(C)	$PC \longrightarrow Memory \longrightarrow IR$			
	(D)	$PC \longrightarrow MAR \longrightarrow Memory \longrightarrow$	IR		
			•		
29 .	Whio	h of the following assembler directive re	eeews	es the indicated number of bytes for a data	
29 .	area		POCTA	os mo madadou mamor or sy vos 202 a auto	
	(A)	END	(B)	BYTE	
	VO)	RESB	(D)	RESW	
			•		
30.	The s	source statements written by the progra	mme:	er are recognized as language constructs by	
	(A)	Semantic analysis	0	Syntactic analysis	
	(C)	Program analytics	(D)	Construct analysis	
			٠.		
31.	Wha	t ITU – T stands for?	٠.	r	
01.	4	International Telecom Union – Teleco	m Sta	andards Sector	
	(B)	International Television Union - Terr			
	(C)	International Technology Union - Ter	rain		
	(D)	Internet Topology Unit - Telecommun	nicatio	ion Lt.	
•	Inte	rnetworking Protocol (IP) is a			
32.	. 4	Unreliable and Connectionless Protoc	ol	•	
32.	(B)	Unreliable and Connection Oriented	Protoc	col	
32.		Reliable and Connection Oriented Pro	tocol	1	
32.	(C)				
32.	(C) (D)	Reliable and Connectionless Protocol			
32.	, .	Reliable and Connectionless Protocol			
32.	(D)	.)	of bit	ts and synchronization of bits?	
	(D)	Reliable and Connectionless Protocol ch layer of OSI model defines Duration Data link layer	of bita (B)	ts and synchronization of bits? Network layer	
	(D) Whi	ch layer of OSI model defines Duration		· ·	

- 34. UML stands for
 - Unified Markup Language (A)

Unified Modeling Language

- Uniform Markup Language (C)
- Unique Markup Language
- Which class of the classful address in Internet is designed for multicasting? 35.
 - (A) Α

В

 \mathbf{C} (C)

One Watt is equal to 36.

- 0.860 Kcal/h
- 760 Kcal/h

- 860 Kcal/h
- 0.760 Kcal/h
- If five forces act on a particle as shown in fig., the horizontal component of forces is 37.

- 33.453 kN
- -40.359 kN

- **(B)** 32.482 kN
- (D) 42.510 kN
- The forces which do not meet at a point are called 38.
 - Non coplanar forces

- **(B)** Coplanar forces
- Non-concurrent forces
- (D) Concurrent forces
- Two forces P_1 and P_2 are acting at an angle θ , their resultant (R) is given by 39.

(A)
$$R = \sqrt{P_1^2 + P_2^2 + 2P_1P_2 \sin 2\theta}$$

(B)
$$R = \sqrt{P_1^2 + P_2^2 - 2P_1P_2\cos\theta}$$

$$R = \sqrt{P_1^2 + P_2^2 + 2P_1P_2\cos\theta}$$

(D)
$$R = \sqrt{P_1^2 + P_2^2 + 2P_1P_2\cos 2\theta}$$

- Dry friction is also known as **40**.
 - Ladder friction (A)
 - Wedge friction (C)

Coulomb friction

Belt friction

- 41. A projectile is fired at an angle α to the horizontal. Its horizontal range will be maximum when α is
 - (A) 30°

459

(C) 60°

- (D) 90
- 42. If 'R' is the range of the projectile on a horizontal plane and 'h' is the maximum height, then the maximum horizontal range with the same velocity of projection is
 - (A) $h + \left(\frac{R^2}{8h}\right)$

(B) $2h + (8R^2h)$

(C) $h + 8R^2h$

- $2h + \left(\frac{R^2}{8h}\right)$
- 43. A body is projected horizontally from the top of a building 30 m high. The time taken by it to reach the ground is
 - 2.47 sec

(B) 24.7 sec

(C) 30 sec

- (D) 33.2 sec
- 44. The bob of a pendulum, 3.5 m long, describes an arc of a circle in vertical plane. If the tension in the string is 2.5 times the weight of the bob for the position shown, the velocity of the bob in that position will be

7.49 m/sec

(B) 8.26 m/sec

(C) 6.42 m/sec

- (D) 10.27 m/sec
- 45. Two particles of masses 2 Kg and 10 Kg are moving with equal linear momentum. The ratio of kinetic energy is

5

(B) 20

(C) 8

- (D) 10
- 46. A bullet of mass 'm' moving with a velocity 'v' strikes a suspended wooden block of mass 'M'. The initial velocity at which the block rises to a height 'h' is

 $\frac{(M+m)}{m}\sqrt{2gh}$

(B) $\frac{(M+2m)}{m}\sqrt{2gh}$

(C) $\frac{M}{(m+M)}\sqrt{2gh}$

(D) $\frac{m}{(m+M)}\sqrt{2gh}$

47. The voltage and current waveforms of a network element are shown in figs. The network element and its value are respectively.

Inductor, 3H

(B) Capacitor, $\frac{1}{3}$ F

(C) Inductor, 1H

- (D) Capacitor, 1F
- 48. An alternating current is represented by $i = \text{Im } \sin wt$. Here 'i' represents
 - (A) Maximum value of ac current
- (B) Average value of ac current
- (C) RMS value of ac current
- Instantaneous value of ac current
- 49. The form factor of half wave rectified alternating current represented by $i = 20 \sin \omega t$ is
 - (A) 1.11

1.570

(C) 2.20

- (D) 3.0
- 50. An air cored coil with a resistance of 22.23Ω and reactance of $62.854~\Omega$ is connected to an ac supply. If it draws a current of 3 A, the power dissipated by the coil would be
 - (A) 66.69 W

200 W

(C) 255.25 W

- (D) 266.22 W
- - (A) $6.6 j \ 4.8$

(B) 0.6 - j1.2

(C) 6.6 - j1.2

0.6 + j1.2

- 52. A single phase motor is running in a particular direction, with respect to double field revolving theory, we can say that
 - (A) both rotating fields (rotating in opposite direction) have same strength forward rotating field is slightly stronger than backward rotating field
 - (C) forward rotating field is slightly weaker than backward rotating field
 - (D) backward rotating field is absent
- 53. The ripple factor of a full-wave rectifier is
 - (A) 1.21
 - (C) 0.406·

- 0.482
- (D) = 0.12
- 54. Fig. shows Zener regulated DC power supply. The minimum value of R_L to which the output voltage remains constant is

(B) 15Ω

(C) 24Ω

- (D) 27Ω
- 55. In Boolean Algebra, 1+A+B+C is equal to
 - (A) A

(C) 1 + A

- (D) 1+3A
- 56. In an optical fiber, the concept of Numerical aperture is applicable in describing the ability of

- (B) Light Scattering
- (C) Light Dispersion
- (D) Light Polarization

	(A)	Planning	0	Organising	•
	(C)	Leading	(D)	Controlling	
			•		
8.	Peter	Drucker stated that, 'One of the great	est ad	lvantages of MBO' is to	
	4	Motivate the Managers			
	(B)	Motivate the Policy			
	(C)	Motivate the Board		•	
•	(D)	Motivate the Organisational Roles			
9.	Quar	ntitative aspects of Manpower Planni	ng de	termine of the right number of	oersonnel
.	-	ired for ——— in an organisation			ر
	-	Each Job	(B)	Specific Job	
	(C)	Analysing Job	(D)	Designing Job	
3 0.	Mavo	o and his associates underscored the ne	ed for	a greater and deeper understand	ing of the
	(A)	economic needs of workers			
	(B)	welfare of workers		•	•
	W.	social and behavioural aspects of ma	nagen	nent	
	(D)	democratic needs of workers		•	
	` ,				
61.	Tho	easiest approach to filup a vacancy is		•	
)1.	THE	Transfer	(B)	Promotion	
	(C)	Gate hiring	(D)	Labour union	
	(0)	Gate ining	1.	Davour annon	
•					
32.		t is measurementship?			
	(A)	Discussing "the numbers" at every of			
	(35)		o look	good later	
	(C)				
٠.	(C) (D)	Trying to agree low objectives so as t Surveying by naval architects Collecting too much performance dat		good later	

63.	Find	out the correct method of planning work in an organisation
00.	(A)	External sources, Internal sources, Capacity to work
		Checklist, Scheduling, Work programme and Action sheets
	`(C) .	Esteem needs, Social needs, Safety needs
	(D)	Motivation, Manpower, Management
64.	Train	ing can not improve performance problems arising out of
	4	Bad Management, Poor recruitment and Poor Job design
	(B)	Empowerment, Training need Assessment
	(C)	Organisational culture and social issues
	(D)	Multi skilling
1		
65.		lopment is "The growth or realisation of a person's ability and potential through the sion of learning and educational experiences", which is defined by
	(A)	Maslow (B) Herzberg
	(C)	Vroom Armstrong
66.	Perfo	rmance Test is also known as
00.	10110	Trade Test (B) Aptitude Test
	(C)	Personality Test (D) Intelligence Test
	(4)	(D) Intelligence lest
67.		is the number of subordinates who report directly to a specific manager
	W	Span of control (B) Span of correction
	(C)	Span of co-ordination (D) Span of checking
68.	Total	Onelity Management
00.		Quality Management requires
	(A)	A committed and involved Management to provide long-term top-to-bottom organizational support
	(B)	An unwavering focus on the customer, both Internally and externally
	(C)	Treating suppliers as partners
	9	All of the above
AEI	3OE/17	14

- 69. Formula for Equipment effectiveness

 Equipment availability × Performance efficiency × Rate of Quality products

 (B) Equipment availability × Rate of Quality products

 Performance efficiency

 (C) Equipment availability × Performance efficiency

 Rate of Quality products
 - (D) Rate of Quality products × Planned operating time × Equipment availability
- 70. What does the TQMEX model of quality management advocate?
 - (A) Quality improvement
 - Integrated approach for managing quality
 - (C) Quality control
 - (D) Total preventive maintenance
- 71. Which of the following is not a part of "Downtime losses"?
 - (A) Start-ups
 - (B) Shift changes
 - (C) Planned Maintenance shutdowns
 - Lack of material
- 72. The core concept of Quality Circle is
 - (A) Top down approach
 - Participative Management
 - (C) Recognition of wealth
 - (D) Forced membership
- 73. Which of the following is correct hierarchy of needs?
 - (A) Survival, security, esteem, social, self actualization
 - Survival, security, social, esteem, self actualization
 - (C) Security, survival, social, esteem, self actualization
 - (D) Security, survival, esteem, social, self actualization

79.	The t	erm green house effect	was coined by		
	(A)	U.S. Pilots		(B)	Robert Angus Smith
	4	J. Fourier		(D)	L.D. Meyer
				•	
80.	The g	green house gases amon	g the following	; are	
	(i)	Methane		(ii)	Carbon dioxide
	(iii)	Water vapour		(iv)	Chloro fluoro carbons
·	(A)	(ii) only		(B)	(i) and (ii) only
	(C)	(i), (ii) and (iv) only		The state of the s	(i), (ii), (iii) and (iv)
81.		property of aerosols wh stries employing Cottrel			ration of dust and particulate matter from
	(Å)	They are colloidal par	ticles having n	anome	ter dimensions
	B	They are charged par contact with electrode		y are	robbed of their charges when coming into
	(C)	They are heavier par on the wall of the colle		e outw	ard by centrifugal force and get deposited
	(D)	They are attracted by	sun light and	coalesc	e in to bigger particles
,					
82.	The	mixture of smoke, fog a	nd Sulphur dio	xide is	called as
. •	(A)	Los Angeles smog	•	(B)	Oxidising smog
	9	Reducing smog		(D)	Redox smog
		÷			
83.	Choo	se the correct answers			
	(i)	Polyphosphates are fi		deterge	ents
-	(ii)	Phosphates serve as a			
	(iii)	Presence of phosphat			d to eutropication
	(iv)				in water bodies is advantageous
	(A)	(i) and (iii) are correct	t .	٠	
	(B)	(i) and (iv) are correct	t		
	(2)	(i), (ii) and (iii) are co	orrect	,	
	(D)	(iv) alone is correct			
R	-		1	L 7	AEBOE/17

84.	Whie	ch of the follo	wing pairs is not corr	ectly matc	hed		٠.						
	TLV	s of different	noise levels.										
		dB	Maximum allow	able expos	sure time per day		÷.						
	(A)	95	4 hours										
•	(B)	100	2 hours										
	(C)	115	15 min				-						
٠. ٠	S	90	6 hours	· .									
	, •			•									
85.	Pollu	tant of air h	ave a greater impact (n weather	due to		. * · · · · · · · · · · · · · · · · · ·						
	(A)		ng of fossil-fuels		Imbalance in nat	ural air-condit	tioning						
	(C)		lution of gases	(2)	Inappropriate to	•	womme						
	(-)		and a garde		mappropriate to	pograpny							
86.	Whi	.L af 4La falla		1- 6 12		.	•						
OU.			wing devices is suitab			•.							
	(A)	Cyclone se		(B)	• •	itator							
	(C)	Fabric fille	r	(30)	Wet scrubber								
							•						
87.		A block of mass 2 kg placed on a long frictionless horizontal table is pulled horizontally by a constant force F. It is found to move 10 m in the first 2 seconds. Find the magnitude of the											
	const force		It is found to move 1	0 m in the	first 2 seconds. Fi	ind the magnit	tude of the						
	-(1010)	10 N	(D) 40 N	(0)	1437								
		10 N	(B) 40 N	(C)	14 N	(D) 1 N	· .						
	-				3		*						
88.	A ste	eel wire of 1	m long and 1 sq mm	in cross s	section having You	ings modulus	1.24×10^{11}						
	Pasc	al. How mucl	n work is done in stre	tching it th	rough 1 mm?								
	(A)	1.24 Joule	·		0.124 Joule								
	(C) ⁻	2.48 Joule		(D)	0.0124 Joule								
89.	A ha	ll has a volu	me 4530 m³. Its absor	ption is eq	uivalent to 185.8 n	n ² of open win	dow. If the						
		ence filler the beration tim	ne hall and the abso e is	rption is	increased by anot	ther 185.8 m ²	, then the						
	4	Half of its i	nitial value	(B)	Same as that of o	original							
	(C)	Double of i	ts initial value	(D)	Four time that of								
AEF	3OE/17	7		18			K						
				***		•	•						

90.	In do	uble refraction, generally we get Both the refracted rays are pla			ach incider	nt ray and							
	(B)	One refracted ray is plane pola											
-		(C) Neither is polarised											
	(D)	One refracted ray is completed	ly plane pol	arised and th	ne other is	partially polar	rised						
	_ <i>\</i>	.											
91.	Asser	tion (A): Laser light is monoc	chromatic ai	nd coherent i	n nature								
	Reaso	on (R): Laser light is highly	directional	in nature		•							
	V.	Both (A) and (R) are correct	(B)	(A) is true	and (R) is	false							
	(C)	Both (A) and (R) are false ~	(D)	(A) is false	and (R) is	true							
Δ0	· T., 4h.	autical Chara the refrective in	dow of some	is no and the	rofractiv	index of clad	dina ie						
92.	n_2 th	e optical fibers, the refractive in	dex of core .	is n ₁ and the	e lemaculve	e muex or clau	unig 16						
	_		· ·		an)								
	(A)	$n_1 < n_2 \qquad \qquad n_1 > n_2$	(C)	$n_1 = n_2$	(D)	$n_1 = n_2 = 1.5$							
					··.								
93.	The a	ngular momentum of the electro	n in hydrog	en atom can	be possibl	y be							
	(A)	$\frac{\lambda}{2}$ $h/2\pi$	(C)	$2\pi/h$	(D)	$\cdot \frac{2}{\hbar}$							
0.4	Tarabah	and of a circum alament must have	o the game	- •									
94.	•	pes of a given element must have	e the same	•		• .							
	(A)	Atomic weight											
	(B)	Molecular weight			•								
		Number of protons in the nucle											
	(D)	Number of neutrons in the nuc	eleus			•							
				•									
95.	The u	unit of activity of a radioactive m	aterial is										
•	(A)	Weber	(B)	Tesla									
•	(C)	Becquerel	(D)	Henry/m	·								

96. The scalar λ is a characteristic root of the matrix A if

- (A) $(A \lambda I)$ is non-singular
- $(A \lambda I)$ is singular

(C) A is non-singular

(D) A is singular

97. The solution of the initial value problem y''+y'-2y=0, given y(0)=3, y'(0)=0 is

 $(A) \qquad y = e^x + 2e^{-2x}$

(B) $y = -2e^x + e^{-2x}$

 $y = 2e^x + e^{-2x}$

 $\mathbf{(D)} \quad \mathbf{y} = 2e^{x} - e^{-2x}$

98. If $u = \cos \alpha x$ and $v = \sin \alpha x$ then the Wronskian of u and v are

(A) 0

(B)

(B) 0

(D) a^2

99. Let $D = \frac{d}{dx}$, then the value of $\left\{\frac{1}{xD+1}\right\}x^{-1}$ is

(A) $\log x$

 $\frac{(\log x)}{x}$

(C) $\frac{(\log x)}{x^2}$

(D) $\frac{(\log x)}{x^3}$

100. If $u = 2axy, v = a(x^2 - y^2)$ where $x = r\cos\theta$; $y = r\sin\theta$ then $\frac{\partial(u,v)}{\partial(r,\theta)}$ is equal to

 $(A) \qquad 4a^2r^2$

(B) $4a^2$

 $-4a^2r^3$

(D) $-4a^2r$

101. The altitude of a right circular cone is 15 cm and is increasing at 0.2 cm/sec. The radius of the base is 10 cm and is decreasing at 0.3 cm/sec. How fast is the volume changing?

(A) $-\frac{80}{3}\pi$

 $\frac{-70}{2}\pi$

(C) $\frac{-70}{3}$

(D) $\frac{70}{3}$

102. If $u = \log \left(\frac{x^4 + y^4}{x + y} \right)$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

(A) 3u

(C) *u*

(D) $\frac{3}{4}$

- 103. The invariant points of $w = \frac{z-3}{z+1}$ are
 - **1** ± i√3

(B) $\pm \sqrt{3}$

 $(C) \pm 3$

(D) $\pm 3i$

- 104. The function $w = \log z$ is
 - (A) Analytic in the complex plane everywhere
 - Analytic in the complex plane except of the origin
 - (C) Not analytic function
 - (D) Analytic function at the origin
- 105. Sum of the residues of $\frac{2z+1}{z^2-z-2}$ at its poles is
 - (A) 4

98) - 2

(C) $\frac{5}{3}$

- (D) $\frac{1}{3}$
- 106. The value of the integral $\int_C \frac{z^2+4}{z^3+2z^2+2z} dz$ where C is |z|=1 is
 - (A) $2\pi i$

(B) (

(0) $4\pi i$

- (D) πi
- 107. The solution of the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$ with integral constant 'C' is
 - (A) $y = (\tan x 1) + C \tan^{-1} x$
 - $y = (\tan x 1) + C e^{-\tan x}$
 - (C) $y = (\tan x + 1) + C e^{\tan x}$
 - (D) $y = (\tan x + 1) + C \tan x$

	(A)	Oildag	– Internal o	con	bustion engines					
	(B)	Molybdenum disulphide	– sandwich	st	ructure	•				
	(C)	Hydrocarbon oils	- watches							
	100	Glycerides of fatty acids	- sewing m	acl	hines					
		•	• • •							
109.	The	calorific value of brown coals	lie in the ran	ge	of ———,					
٠.	· W	6500 – 7000 Kcal/kg	(E		8000 - 8500 Kcal/kg					
	(C)	8500 8600 Kcal/kg	T)))	8650 – 8700 Kcal/kg					
						- -				
110.	Whic	h among the following can wi	ithstand upto	2	500°C?	er en				
	(A)	High alumina	(E		Dolomite	•				
	(C)	Chromite	J	1	Zirconia					
			•							
111.	Which one of the following is formed (as a green film) when copper is exposed to moist air									
	conta	ining CO ₂ ?				· · · · · · · · · · · · · · · · · · ·				
	U	$CuCO_3 + Cu(OH)_2$	(F	3)	$Cu_2CO_3 + Cu(OH)_2$	•				
	(C)	$CuCO_3 + Cu(OH)$	(I)) ·	$CuSO_4 + Cu(OH)_2$					
					•					
112.	What	is the gross calorific value	e of 1 kg of		arbon? Cisson that C	. O (~) . CO (~)				
112.		= -394 kJ/mol . Atomic weight				$+O_2(g) \rightarrow OO_2(g),$				
	4	7,847 kcal/kg	•							
	(C)	3,940 kcal/kg	(E (I		3,200 kcal/kg 12,000 kcal/kg					
	(0)	o,o to hourng	(T	"	12,000 KCal/Kg					
113.	Grou	nd water econimes calcium	. J	. 1.		•				
110.		nd water acquires calcium an				and the second s				
	—	the dissolution of calcium a	and mägnesu	un	carbonates in water con	taining dissolved				
•	(B)	the hydrolysis of CaSO ₄ an	d MgSO, wif	th	water containing dissolve	d CO.				
	(C)	the hydrolysis of CaCO ₃ an				-				
	(D)					_				
	(1)	the reaction of calcium and	magnesium s	3111 ₁	cates with water containi	ng dissolved CO ₂				
114.		h of the following is not true?	,							
	(A)	PVC is a tough polymer								
	(B)	Teflon is a non-sticky polym				2 8				
	(C)	Clay is a thermosetting poly								
	(D)	Urea-formaldehyde is a the	rmosetting po	oly	mer					
AEB	OE/17		22			*				

Choose the mismatch of the following

108.

115. Which of the following is the strongest reducing agent?

Given
$$\varepsilon_{xn^{3+/2x}}^{\circ} = -0.762 v$$
; $\varepsilon_{cr^{3+/4x}}^{\circ} = -0.74 v$

$$\varepsilon^*_{\kappa_e^{3+/\kappa^{2+}}}=+0.77v$$

Zr

(B) Cr

(C) H₂

- (D) Fe²⁺
- 116. Which of the following is not a primary explosive?
 - (A) Mercury fulminate

(B) Tetracene

(C) Lead azide

TNT

- 117. Corundum is made up of
 - (A) SiO_2

(B) B_4C

(C) SiC

- Ω Al₂O₃
- 118. The compound, tricresyl phosphate is used in petroleum oil lubricants for reducing
 - (A) Waxing in oils

Abrasion

(C) Emulsification

- (D) Foam formation
- 119. Pick out the correct meaning of the idiomatic expression given below rain cats and dogs
 - (A) Secretly

(a) Rain heavily

(C) Run away

- (D) Very violent
- 120. Identify the sentence with the wrong question tag:
 - (A) Amala plays tennis, doesn't she?
- (B) I am not a boy, am I?

It is a book, is it?

(D) I am reading a book, aren't I?

- 121. The phrase In vogue signifies
 - (A) in search of

(B) close relations

in fashion

(D) in all places

122.	Give a suitable title to the given passage.												
	By t just	By this tomorrow, and everyday, there will be added to the earth about 12,000 extra people just about the population of the city of York.											
	(A)	Child birth		(B)	Population menace								
	(C)	Growing people			World population								
123.	Give	one word substitute for "a	person who de	oes n	ot accept all the rules and codes".								
	(A)	Altruist			Anarchist								
	(C)	Agnostic		(D)	Ambivert								
		•											
124.	Supp	oly antonym for the followi	ng word :	٠.		•							
	Pletl	hora											
	4	Shortage		(B)	Weakness								
	(C)	Sickness		(D)	Smallness								
125.	Expr	essions such as Yours fait	hfully'. 'Yours	truly	y', 'Yours affectionately' are termed	90							
	(A)	Salutation	,		Subscription	ao							
	(C)	Reference		(D)	Direction								
126.	Char			1.	1								
120.	Choose the correct synonym of the word underlined in the following sentence. Her <u>Seraphic</u> semblance was worshipped by one and all												
		_			·								
	(A)	good		(B)	beautiful								
	(30)	augelic		(D)	demoniac								
127.	Rear	range the jumbled sentenc	es in the follow	vino	nasaagag								
	S1	Venice is a strange and be		_									
	S6	This is because Venice ha		UIDE .	north of Italy								
	P.			hride	ges joining the islands of Venice								
	Q.	In this city there are no n	,										
	R.	These small islands are n			ses and no puses								
	S.	It is not one island but a l			teen islando								
			water by		TTTAL AUGUSTA								
	(A)	QPRS	•		SRPQ								
	(C)	SPQR		(D)	QSPR								
AEB(OE/17	7	24										

122.

128.	Fill in the blanks with the correct verb forms from the options given:									
	While	e I ———— at the star – studded s	ky, my f	riend arrived.	. •					
	(A)	had been gazing	(B)	has been gazing						
	4	was gazing	(D)	is gazing						
129.	Whic	ch of the following activates one of the	e registe	rs to load inputs?						
	(A)	Multiplexer	(B)	Encoder						
	6	Decoder	(D)	ALU	•					
				•						
190	The s	performance of cache memory is frequ	iently m	neasured in terms of						
130.	(A)	Turn around time	(B)	Latency time						
	(C)	Miss ratio		Hit ratio						
					•					
131.		k is a	T							
	(i)	Storage device that stores informati		st-in-rirst-out manner.						
,	(ii)	Stack is associated with a address re	egister.	•	÷					
	(iii)	Stack can perform any operation.	(T)\							
	()	(i) and (ii)	(B)	(i) only	.*					
	(C)	(ii) and (iii)	(D)	(i) and (ii) and (iii)						
				•						
132.	Give	en two binary numbers		•						
	A =	10011100 B = 10101010								
	R ←	(A AND (Shl B)) XOR A		•						
	Afte	r executing the statement, content of	R will b	oe.:						
	(A)	10000010	(B)	11110000	•					
	6	10001000	(D)	00011100						
			:							
133.		a computer with main-memory capa ded to specify a physical address in m			ow many bits are					
	(A)	20 bits		15 bits						
	(C)	32 bits	(D)	16 bits						
	(0)	<u> </u>	95		AEBOE/17					

134.	In Ethernet LAN, NIC stands						
	(A)	National Interface Card					
	(B)	Node Interface Card					

Network Interface Card

(D) Network Internet Card

135. Cellular phones are working in the band of

- (A) High frequency
- (B) Very high frequency
- Ultra high frequency
- (D) Super high frequency

136. To design a cross-bar switch, how many cross points are required to connect n inputs to m outputs?

(A) n/m

(B) $2n \times m$

(C) n+m

 $n \times m$

137. Which of the following device is a protocol converter?

- (A) Bridges
- (B) Routers
- (C) Switches
- Gateways

138. A piece of C language code:

for
$$(i = 0; i < 50; i = i + 3)$$

Printf ("I am Repeated");

How many times "I am Repeated" is printed?

17

(B) 13

(C) 11

(D) 10

Centroid of the area shown in figure is 139.

(A)
$$\overline{x} = 3.524 \text{ cm}, \quad \overline{y} = 2.242 \text{ cm}$$

(3)
$$\bar{x} = 3.749 \text{ cm}, \ \bar{y} = 2.655 \text{ cm}$$

(C)
$$\overline{x} = 3.623 \text{ cm}, \overline{y} = 2.416 \text{ cm}$$

(D)
$$\bar{x} = 3.842 \text{ cm}, \quad \bar{y} = 2.522 \text{ cm}$$

Moment of Inertia of solid sphere is

(A)
$$\frac{Mr^2}{2}$$

(B)
$$\frac{3}{2}Mr^2$$

$$\frac{2}{5}Mr^2$$

(D)
$$\frac{5}{2}Mr^2$$

Velocity of a moving body

- (C) is a constant quantity
- (B) is a scalar quantity
- (D) involves magnitude only

142. In which among the following metallic coatings, the coat metal is anodic to the base metal?

- Coating of zinc over iron
- **(B)** Coating of copper over iron

(C) Silver over copper (D) Gold over copper

143. The acceleration due to gravity of a particle falling towards earth is
$$a = -\frac{gR^2}{r^2}$$
 where 'r' is the distance from the centre of earth to the particle. 'R' is the radius of the earth and 'g' is acceleration due to gravity. The escape velocity when the particle is projected from surface of the earth is

$$V_{e} = \sqrt{2gR}$$

(B)
$$V_e = \frac{1}{\sqrt{2gR}}$$

(C)
$$V_e = \frac{R}{\sqrt{2g}}$$

(D)
$$V_e = \frac{\sqrt{2g}}{R}$$

A stone is dropped into a well 70.75 m deep. The time after which the sound be heard, if the velocity of sound is 350 m/s is

(A) 3 sec 4 sec

(C) 5 sec

6 sec

145. The kinetic energy due to rotation of a body is equal to

$$\sqrt{}$$
 $\frac{1}{2}$

$$\frac{1}{2} Iw^2$$

(B)
$$\frac{1}{2}mv^2$$

(C)
$$2Iw^2$$

(D)
$$\frac{1}{2}I^2w$$

146. The conditions of equilibrium for coplanar non-concurrent forces are

(A)
$$\Sigma H = 0$$
, $\Sigma V = 0$

(B)
$$\Sigma H = 0$$
, $\Sigma M = 0$

(C)
$$\Sigma V = 0$$
, $\Sigma M = 0$

$$\Sigma H = 0, \ \Sigma V = 0, \ \Sigma M = 0$$

147. A car weighing 49050 N climbs up a hill that rises 1 in 25 m of its length at the rate of 72 Km/h. Neglecting friction, minimum power developed is

(B) 42170 W

(C) 40000 W

- (D) 141750 W
- 148. With 4 resistances connected in parallel, if each dissipates 10 W, the total power supplied by the voltage source equals
 - (A) 400 W

(B) 100 W

40 W

- (D) 10 W
- 149. For the given circuit, the voltage drop across resistance 'R' would be

(A) 8 V

10 N

(C) 12 V

(D) 15 V

K			29				AEBOI [Turn o	
	(D)	in the direct ratio of th						D /4 ==
	(C)	in the inverse ratio of						
	1	equal						
	(A)	purely reactive				-		
154.		transformers are connectatings provided their p					ne ratio of t	their
		DC differential compo	ind generator					
	(C)	DC cumulative compou						
	(B)	DC shunt generator		••				
	(A)	DC series generator						
153.		type of DC generator pre	ferred for arc w	eldin	g applications is	3		•
	(D)	2300 revolutions						
	40	230 revolutions		•			•	
	(B)	23 revolutions						
	(A)	2.3 revolutions						
152.	made	nergy meter makes 100 r when connected to loa ar will be	evolutions of di d carrying 10 A	isc fo A cui	r one unit of ener erent at 230 V a	ergy. The no and unity po	of revolution of revolution	ions for
	(D)	Attraction type Moving	Iron voltmeter		:	4.		
	(C)	Repulsion type Moving	Iron voltmeter					
	0	Dynamometer type volt			•			
	the a	pplied voltage? Permanent magnet mo	ving coil voltme	ter				
151.		nich type of voltmeter th	e readings are	not a	ffected by the c	hanges in th	e waveforn	n of
		RBY		(D)	BRY		· .	
	(A)	BYR		(B)	YBR		•	
	the ne	egative sequence would b	e					

150. In general three phases are denoted by R, Y and B. RYB is taken as positive sequence,

155. At	100% modulation, the power in po	wer each sid	eband is $$	—— of that of carr	ier.
(A)	50%	(B)	40%		
(C)	60%	· 100	25%		
156. The	frequency of the Stereo Subcarrie	er Signal in I	M broadcastin	orie :	•
(A)	19 KHz		38 KHz	5 15	
(C)	50 KHz	(D)	76 KHz		
, ,		(13)	70 IIIIz		·
156 W	TIS AMERITA TO 1		-		
	IF is 455 KHz, If the radio receiv	er is tuned to		local oscillator frequ	iency is
(A)	455 KHz		1310 KHz		
(C)	1500 KHz	(D)	1520 KHz		
	·	.			,
158. In w	hat order do managers typically p	erform the 1	nanagerial fund	ctions?	
(A)	Organising, Planning, Controll			•	
(B)	Organising, Leading, Planning,	Controlling			
· 64	Planning, Organising, Leading,				
(D)	Planning, Organising, Controll		•	•	•
		•			
159. Dece	entralization is a fundamental asp	•			
(A)	Authority	(B)	Responsibility		
(C)	Duty	(D)	Delegation		•
\- /			Defedation		÷.
100 117		,			
	at is the Guiding principle of Scien	tific Manage	ement?		
(A)	Experimentation				
(B)	Fluid working relationships			•	
(C)	Freedom of Association				•
	One best way to do a job				
			·		
161. Job	Analysis, Job description, Job spe	cification and	l Job evaluation	n are the major activ	vities of
(A)	Organizational Planning				
(B)	External Planning		*		
. 45	Manpower Planning	•	,		
(D)	Importance of Planning		•		
ABBORRA		,			
AEBOE/1	•	30			1

162.	Orga	nisation	n's acti	vities inv	olve a	variety (of				
•		•		s, resourc					9 °		
	(B)			ctions an			'			•	
	(C)			and strat		•					
	(D)			oals and		n On	:				
		•	, 0							·	
163.	Effic	iency ca	n be ex	pressed	as						
	4	Outpu Inpu	ut trelat	ionship			(B)	$\frac{\mathrm{Input}}{\mathrm{Output}}$ relationshi	p		
	(C)	Tar Object	re	, elationsh	ip	÷	(D)	Materials relation	ship	•	
		,	· ·	•							
164.	Orga	anisation	n chart	shows or	nly —	*	- relatio	onships.			
	(A)	Inform	nal	•			9	Formal			
	(C)	Sidew	ard				(D)	Downward			
165.	Mat	ch the fo	llowin	g : '							
		· N	lames			Year					
	(a)	F.W. T	aylor b	orn in	1.	1771					
	(b)	•		born in	2.	1841					
	(c)	Henry			3.	1880	•				•
	(d)	Elton I	Mayo b	orn in	4.	1856	-				
		(a)	(b)	(c)	(d)						•
	40	4	1 .	2	3						
	(B)	2	3	4	1						
	(C)	1	2	3	4	1					
	(D)	3	4	1	2.	-		•			
100	m.	_h;!!# 4			h aster		hoth :-	dividually and in a -	rann is	aallad	
166.					n otne:	c beobte	outh in	dividually and in a gr Human skill	toup is	caned .	
	(A)		ical sk		-		(D)	·			
	(C)	Conce	eptual s	SKIII			(D)	Behavioural skill) 	
R			• •			8	31	• ;		AEBOE/: [Turn ove	
									,		

167.		The Quality Assurance Manual that specifies standards for Quality Management and Quality Assurance in Design / Development production, installation and servicing is									
	W	ANSI / AS	SQC 9001 -	- 1994		(B)	ANSI/	ASQC 9	002 –	1994	
	(C)	ANSI / A	S Q C 9003 -	- 1994		(D)	ANSI/	ASQC 9	014 – 1	1994	
168.	Asser	ction (A):	• .	and wil	l build	cons	ensus	on the			nove trade ronmental
٠.	Reaso	on (R):		in the v							option and the world
	(i)	Both (A)	and (R) are	correct :	(R) is tl	he cor	rect expl	anation	of (A)	•	
	(ii)	Both (A)	and (R) are	e correct :	(R) is n	ot the	correct	explanat	ion of	(A)	
	(iii)	(A) is cor	rect but (R) is not co	rrect				•	•	
•	(iv)	Both (A)	and (R) are	e incorrec	t ·	-	*		•		
	. (4)	(i)					(::\				
	(A)	(i) (iv)				(D)	(ii)			· .	
	(C)	(1V)		•	•	(D)	(iii)	•			
							•				
169.		nose the ca asure of	uses and p	roviding	remedie	s to ir	nprove t	he gaps	in the	process e	fficiency is
	(A)		levelopmen	ıt				•		·	•
	(B)	Quality p	7								
•	(C)	Quality c				-					
	(D)		mprovemer	ıt				•			
	•		_		•				-		
			. '			· · · .					
170.	In R	and R stud	y, Measure	ement var	iation d	ue to	equipme	nt is cal	led		· · · · · · · · · · · · · · · · · · ·
	(A)	Bias	•			(B)	Reprod	lucibility	*		
	(C)	Linearity				9	Repeat	ability	•	•	
-											
			•				•	•			
171.	P-D-0	C-A stands	for		. •	•					• '
	(A)	Plan, Do,	Correct, A	ction							
	(B)		Check, Ac				•				•
	(C)		Do, Correct		.=		:			•	
	(D)	Process,	Dø, Check,	Action			•				•
AEE	OE/17	7			32	2		· .			7

172.	Sequential Sampling is an extension of which of this sample plan										
	(A)	Single sampling plan									
•	(B)	Double sampling plan									
	6	Multiple sampling plan									
	(D)	Blind sampling plan									
173.	360 d	egree performance appraisals refer to									
	(Å)	Non-monetary forms of recognition to acknowledge achievement of quality improvement goals									
	(B)	Individual based performance system									
	(C)	Qualify based performance appraisals									
•	DY.	Feedback from coworkers subordinates or customers is incorporated into performance appraisals									
-											
174.		otal quality management philosophy that focuses on the components planning, control mprovement was developed by whom?									
	(A)	Edward Dening									
	(D)	Joseph M. Juran									
	(C)	Walt S. Shewhart									
	(D)	David Ricardo									
155	VIII : 1 Call Call wing is not a manager tion coat?										
175.	WINIC	h of the following is not a prevention cost?									
		Design review									
	(B)	Final inspection									
	(C)	Purchase order review									
	(D)	Capability review									
•											
176.	DMA	IC is a problem solving approach used in which of these?									
	(A)	Kaizen									
	(B)	5 S model									
	(0)	Six sigma									
	(D)	Fishbone model									

177.	Whi	which of the following is the initiator for formation of photochemical smog?										
	(A)	Ozone	(B)	Nitrogen oxide								
	(C)	Volatile hydrocarbons	9	Sunlight								
		,										
178.	Gase	eous pollutants are Gaseous in nature	.: :									
	(A)	at low temp and low pressure	<u>.</u>									
	(B)	at boiling point and high pressure										
	(C)	at normal temperature and high pre-	ssure									
		at normal temperature and pressure										
179.	Dark	coping offset of Toi Make V : 1	/a\	2 (2) (2) (3)								
. 10.	answ	ver accordingly to the coding scheme gi	(I) NO	O _x (2) CO (3) CO ₂ (4) SO ₂ . Select your								
	(A)	1 and 2 are correct	(B)	1 and 3 are correct								
	(C)	Only 3 is correct	(D)	Only 4 is correct								
	` ,			Oldy 4 is correct								
				•								
180.	The a	automobile exhaust consists excess of -		——gas								
	(A)	CO_2	(B)	02								
•	. محملا	CO	(D)	CH ₄								
			. •									
.01	m)											
181		species which consume O ₃ present in the	he atm	osphere are								
	(i)	NO	,									
	(ii)	Cl	1									
	(iii)	O_2	•									
. '	(iv)	H_2O										
	(A)	(ii) only										
	(B)	(ii) only (iii) only										
	9	(i) and (ii) only										
	(D)	(i), (ii) and (iii) only										

AEBOE/17

		Activated sludge process	(D)	Adsorption						
100	0	*1 - 1 - 6-11 - 1 - 1 - 1		•						
183.		ider the following statements								
	(A)	The ratio of carbon to nitrogen in that of industrial wastes	n settled d	iomestic sewer is alw	ays much higher than					
	(R)	Because they contribute much or	ganic mat	ter.	•					
•		select the correct answer according	ng to the c	oding scheme given l	pelow					
	(A)	(A) is true but (R) is false								
		(A) is false but (R) is true	•							
	(C)	Both (A) and (R) are correct and ((R) is not	the correct explanation	on for (A)					
	(D)	Both (A) and (R) are false and (R)) is the co	rrect explanation for	(A)					
	i i				•					
				1 - <i>P</i>						
184.		processing industry waste contains	· ·							
•	(A)	Proteins	(B)	Amino acids	•					
		Starch	(D)	Alkali metals						
		,	•		•					
185.	Choo	se the correct answer			•					
	Norn	nal human body has about	mg	of silver, excess of A	Ag mg in					
		an body causes changes in blood cel			•					
-	JAMP .	1, 100 (B) 5, 2500	(C)	10, 150 (D)	5, 150					
		•			•					
186.	Whia	h among the following is correct.			•					
100.			: ::::::::::::::::::::::::::::::::::::							
-		Permissible limits of radio active nuclides in water as recommended by the international commission on Radiological protection								
	Carre .		(B)	8 PC, /l - β -activity	y					
	(C)	5 PC, A – Rodium 226	(D)	5 PC _i / $l - \alpha$ - activit						
	(0)			o i o _i , i a activit	y					
			•							
187.	Asser	rtion:(A) Flooding may not dest	roy the na	ature of the soil						
	Reas	on: (R) Flooding of rivers and	seas is no	ot major routes of soil	pollution					
		select your answer acc	ording to	the coding scheme gi	ven below					
•	(A)	(A) is false but (R) true and (A) is	the corre	ct explanation for (R)					
• ,	(B)	(A) is true but (R) is false and (R)	is the cor	rrect reason for (A)						
	100	Both (A) and (R) are false								
	(D)	Both (A) and (R) are true								
ĸ			35		AEBOE/17 [Turn over					
					Lannoit					

The biological process among the waste water treatment methods is

(B) Neutralisation process

Coagulation process

182.

	4	equired								
-	(B)	High pressure of the order of 100 atm is required High electric field of the order of 10^3 V/m is required								
	(C)									
	(D)	High voltage of the order of 10 ⁴ V is required								
189.	The c	coordination number for face centere	d cubic l	attice is						
. •	Jun 1	12 (B) 8	(C)	6 (D) 4						
	_	· ·								
190.	Supe	r conductors are used to make								
	(A)	Permanent magnets	(B)	Electronic devices						
	(C)	Diodes	(2)	Electro magnets						
191.	Polar dielectric materials which have permanent dipole moments are used in making									
-	4	Capacitors	(B)	Resistors						
	(C)	Inductors	(D)	PN junction diode	•					
			. •							
192.	In semi conductors, the forbidden band is									
•	43	Very small	(B)	Very large						
,	(C)	Zero	(D)	Overlap each other	•					
	٠		+ 1	•	•					
1 9 3.	The overall enterprise objective is achieved through									
	(A)	Organisation	(B)	Staffing	•					
·	(2)	Co-ordinating	(D)	Leadership						
					.*					
194.	When the frequency of the voltage applied across a capacitor is increased									
	(A)	Current remains unchanged	(D)	Current increases						
	(C)	Current decreases ,	(D)	Voltage is maximum						
-			•		• •					
		•								

188.

AEBOE/17

For the nuclear fusion reaction to take place

	(A)	Frequencies less than 20				•			
	(B)	Frequencies between 20 Hz and 20,000 Hz							
	-	Frequencies much higher than 20,000 Hz							
	(D)	Frequencies equal to the	frequencies of visi	ble light					
			•						
96.		r has the density maximun		ure equal to					
	(A)	-4° C (B) 0° C	(C)	4 K	4° C				
					•				
97.	The first law of thermodynamics is a statement of								
٠.	(A)	Conservation of universe	(B)	Conservation	of mass				
	(C)	Conservation of momentu	mi 🥒	Conservation	of energy				
	٠.				·				
98.	Assertion (A): For optical interference to take place monochromatic light is to be used								
	Reason (R): The light source used should be coherent in nature								
	(A)	(A) is false and (R) is corr	ect (B)	(A) is correct :	and (R) is false	,			
	COP	Both (A) and (R) are corre	ect (D)	Both (A) and	(R) are false	j			
		•				,			
99.	The condition for diffraction to take place is								
	(A)	The size of the obstacle should be less than intensity of light							
		The size of the obstacle should be the comparable to the wavelength of light							
	(C)	Both the sizes of the obstacle and the wavelength are not related							
	(D)	The size of the obstacle should be greater than the size of the wavelength of light							
00.	The substance that rotate the plane of polarisation are said to be								
	4	Optically active	(B)	Optically inac	tive				
	(C)	Opaque	(D)	Polaroids					
		· ·							
	. •		37			AEBOE/17			
						[Turn over			

195. Ultrasonic waves are the those waves which have