		_
ļ		
	- 1	
_	-	
	-	
_	_	
-		
. •	₽.	
	- 4	

Question Booklet No. :		CEA	M/2022
		OLII.	
	Register Number		

PAPER - I

AUTOMOBILE ENGINEERING

(Degree Standard)

Duration: Three Hours]

[Total Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. You will be supplied with this question booklet 15 minutes prior to the commencement of the examination.
- 2. This question booklet contains 200 questions. Before answering the questions, you shall check whether all the questions are printed serially and ensure that there are no blank pages in the question booklet. If any defect is noticed in the question booklet, it shall be reported to the invigilator within the first 10 minutes and get it replaced with a complete question booklet. If the defect is reported after the commencement of the examination, it will not be replaced.
- 3. Answer all the questions. All the questions carry equal marks.
- 4. You must write your register number in the space provided on the top right side of this page. Do not write anything else on the question booklet.
- 5. An answer sheet will be supplied to you separately by the room invigilator to shade the answers.

 Instructions regarding filling of answers etc., which are to be followed mandatorily, are provided in the answer sheet and in the memorandum of admission (Hall Ticket).
- 6. You shall write and shade your question booklet number in the space provided on page one of the answer sheet with BLACK INK BALL POINT PEN. If you do not shade correctly or fail to shade the question booklet number, your answer sheet will be invalidated.
- 7. Each question comprises of five responses (answers): i.e. (A), (B), (C), (D) and (E). You have to select ONLY ONE correct answer from (A) or (B) or (C) or (D) and shade the same in your answer sheet. If you feel that there are more than one correct answer, shade the one which you consider the best. If you do not know the answer, you have to mandatorily shade (E). In any case, choose ONLY ONE answer for each question. If you shade more than one answer for a question, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 8. You should not remove or tear off any sheet from this question booklet. You are not allowed to take this question booklet and the answer sheet out of the examination room during the time of the examination.

 After the examination, you must hand over your answer sheet to the invigilator. You are allowed to take the question booklet with you only after the examination is over.
- 9. You should not make any marking in the question booklet except in the sheets before the last page of the question booklet, which can be used for rough work. This should be strictly adhered to.
- 10. Failure to comply with any of the above instructions will render you liable for such action as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

1. Wearing of crankshaft main bearings and journals occurs due to (A) Lack of oil (B) Scratches by dirt in the oil Friction between connecting rod and crank pin (C) Both (A) and (B) Answer not known Air will be drawn into the cooling system if there are leaks at any point 2. between Water pump and jackets (A) Radiator and water pump Thermostat and Radiator (C) **(D)** Radiator cap and expansion tank Answer not known **(E)** "Tune up" is the name given for 3. (A) Scheduled Maintenance Periodic Maintenance (B) Preventive Maintenance **(D)** Breaku: Maintenance

(E)

- 4. Noise from the transmission in reverse could be caused by
 - Worn or damaged reverse idler gear
 - (B) Defective front-bearing retainer
 - (C) Clutch not disengaging
 - (D) Worn (or) wise pilot bearing
 - (E) Answer not known
- 5. Technician (A) says to rest for slipping of clutch by shifting the transmission into low gear.
 - Technician (B) says to test for a slipping of clutch with parking brake firmly engaged.

Identify the correct technician or technician's

- (A) Technician (A)
- Technician (B)
- (C) Both (A) and (B)
- (D) Neither (A) nor (B)
- (E) Answer not known
- 6. Gear clash while shifting could be caused by
 - (A) Gear loose on the main shaft
 - (B) Clutch not engaging
 - (C) Broken shift fork
 - Horn synchronizer ring
 - (E) Answer not known
- 7. Noise from transmission in gear could be caused by
 - (A) A worn or loose pilot bearing
 - (B) Excessive lubricant
 - Worn or damaged gear teeth and synchronizers
 - (D) Defective front bearing retainer
 - (E) Answer not known

8.	Autl	norised officer seize a vehicle when
	(A)	The vehicle is not covered by a valid insurance
	(B)	The vehicle exceeds the speed limit
	(C)	Driver does not have license
•	DI	The vehicle is not covered by a valid resistration (or) permit
	(E)	Answer not known
9.		otor cycle without gear may be driven by a person after attaining the
	age	
	(A)	$oldsymbol{12}$
	(B)	14
	40)	16
	(D)	17
	(E)	Answer not known
10.		earner's licence shall be issued to any applicant unless he/she passes
		ne satisfaction of the licencing authority, such test may be presribed
	by	
	(11)	Central Government
	(B)	State Government
	(C)	Nagar palika
	(D)	District magistrate
	(E)	Answer not known

11. Painting and Priming are done to protect the body from:

- 1. Corrosion
- 2. Damage
- 3. Corrosion, strength
- 4. Appearance
- (A) 1 and 2 only

(B) 3 only

(C) 2 and 4 only

3 and 4 only

(E) Answer not known

12. Sequence the order of Executions:

- 1. Press the remote key of the car
- 2. The Receiver picks up the code
- 3. Complex code is transmitted
- 4. Electrical signal is sent to the control unit
- 5. If code is correct, relays are triggered and doors are open

(A)
$$1-2-3-4-5$$

(B)
$$1-3-2-4-5$$

(C)
$$1-3-4-5-2$$

(D)
$$1-4-5-2-3$$

(E) Answer not known

13. Choose the correct answer:

The Electronic control unit on the outer side of the seats adjusts the following

- (1) Height of seat
- (2) Angle of the seat
- (3) Back-rest angle of the seat
- (4) Seat distance from the rear side
- (A) (1) only
- (B) (2) only
- (1), (2) and (3)
 - (D) (1) (2) and (4)
- (E) Answer not known

14.		ose the sequence in developing a car model through shape nization for reduced drag.
	(A)	Basic shape – Basic body – Basic model – Styling model
	(B)	Basic model – Basic body – Basic shape – Styling model
		Basic body – Basic shape – Basic model – Styling model
	(D)	Styling model – Basic shape – Basic body – Basic model
	(E)	Answer not known
15.		g the coefficient of Drag, The most important aerodynamic aspect of c's shape is
	(A)	Rear end of the car
	(A)	Front end of the car
	(C)	Height of the car
	(D)	Roof curvature of the car
. *	(E)	Answer not known
	(—)	
16.	•	ase of open circuit windtunnel, to avoid flow reversal, the exit
-	pres	sure should be ———— the atmospheric pressure.
	(A)	equal to
	D	greater than
	(C)	lesser than
	(D)	not related
	(E)	Answer not known

17.	The	seat belt tensioners are built in the ———.
:	(A)	Shoulder anchors
	(B)	Front seats
	(e)	Seat belt retractors
	(D)	Seat belt buckles
	(E)	Answer not known
18.	The	roof panels and outer ponds of a conventional bus body are joined by
	(A)	brazing
	(B)	blasting
		riveting
	(D)	bolting
	(E)	Answer not known
19.	door	is the shut face for front door and the tinge pillar for rear.
	(A)	A pillar post
	(P)	B pillar post
	(C)	C pillar post
	(D)	D pillar post
	(E)	Answer not known

CEAM/2022

20.		releasing and Reapplying e in a 'ABS' is called	of the brakes in succession, which takes
	(A)	Acceleration Modulation	(B) Brake Modulation
	(0)	Pressure Modulation	(D) Velocity Modulation
	(E)	Answer not known	
21.	Disc	brakes self - Adjust when	the lining wear allows the piston to
	(A)	Contact the Disc	
	B	Slide outward through th	e seal
	(C)	Cause Seal Deflection	
	(D)	Reposition the seal groov	e in the caliper
*	(E)	Answer not known	
22.	Self	energizing brakes are havi	ng the ability of ————.
	(A)	Utilizing the force of the l	orake fluid to increase the brake pressure
	(B)		e engine vacuum to increase the brake
	()	Utilizing the force of the pressure	e rotating drum to increase the brake
	(D)	Utilizing the force of th pressure	e power steering to increase the brake
	(E)	Answer not known	
23.		ssively when the brakes	ch front disc and rear drum brakes dips are applied. This may be caused by a
	(A)	Proportioning valve	(B) Pressure - differential valve
	40)	Metering valve	(D) Check valve

24.	Whi	ch is / are correct relating to brakes?
	(1)	If coefficient of friction is too high, the brakes will be too "grabby" and it will be very easy to control.
	(2)	If coefficient of friction is too low, then it will not stop the vehicle effectively.
	(A)	(1) only (2) only
	(C)	Both (1) and (2) (D) Neither (1) nor (2)
• • • •	(E)	Answer not known
25.		is a suspension system in which the wheels are mounted lly on the half axle and pivoted on their ends to the chasis at the dle of the car.
	(A)	Mac Pherson start type suspension
	(B)	Swinging half axle suspension
	40	Trailing link suspension
	(D)	Wish bore type suspension
	(E)	Answer not known
26.	Whi	ch of the following is not a type of gear box?
	(A)	Sliding mesh (B) Constant mesh
	(C)	Synchromesh Differential mesh
	(E)	Answer not known
27.	Cho	ose the wrong statement about leaf spring.
	(i)	Semi Elliptic leaf springs are used in light vehicles
	(ii)	Semi Elliptic leaf springs are used in heavy vehicles
	(iii)	Both ends of the leaf spring connected rigidly with frame of the vehicle
	(iv)	The leaf spring one end connected with frame and other end connected with shackle of the vehicle
	(A)	(i), (ii) and (iii) (B) (i) only
	(C)	(ii) only
	(E)	Answer not known

20.	ASU	abilizer bar has no effect during
	(A)	Vehicle turns as a curve
	(8)	Vehicle travelling as a smooth surface
	(C)	One of the tire hits as bump
	(D)	One of the tire hits on pothole
	(E)	Answer not known
29.		is NOT a part of an sprung mass?
-	(11)	Propeller shaft
	(B)	Tyres
	(C)	Wheels
	(D)	Damper
	(E)	Answer not known
30.	A M	ac-pherson short type of suspension on uses
	(A)	half-axle
	P	lower wishbores
	(C)	Trailing Link
	(D)	Upper and lower wishbores
	(E)	Answer not known

31.	Wh	ich one of the following wheels are more prone to corrosion?
	(A)	Carbon fibre wheels
	(B)	Composite wheels
	(C)	Aluminium alloy wheels
•	(0)	Magnesium alloy wheels
	(E)	Answer not known
32.		h this type of rear axle, the axle can be removed from the honging
	with	nout disturbing the wheel.
	(A)	Full-floating axle
	(B)	Semi-floating axle
	(C)	Three quarter-floating axle
	(D)	Two speed axle
	(E)	Answer not known
	·	
33.	The	semi floating rear axle shaft does not withstand
	(A)	Bending moment
	(B)	End thrust
	(C)	Prising torque
	(1)	Twisting moment
	(E)	Answer not known

CEAM/2022

34.	Tor	que tube drive is used in
01.		[18] 하는 하는 그를 보는 그리고 하는 그 모든 [12] - 하는 하는 한 시간 하는 사람들이 되었다.
	(A)	Commercial vehicle such as trucks and buses
	(B)	Defense vehicle
	(C)	Passenger cars
	(D)	Jeeps
	(E)	Answer not known
35.	In a	limited slip differential, when one wheel starts to spin
	(A)	The pinion gears are demeshed from the side gears
	(B)	The ring gear is held stationary
	(C)	All the torque goes to the spinning wheel
	(B)	The differential side gears become locked to the case by usuage of
		clutches or cones
	(E)	Answer not known
36.	Whe	en vehicle moves in straight path, the condition of planet gear is
	(A)	Spins about its own axis
_	(B)	Spins about its own axis and revolves around sun gear

Only revolves around sun gear

Answer not known

(C)

(D)

(E)

Idle

- In davis steering mechanism, the equation for correct steering is where 37.
 - b Distance between the pivots
 - l Wheel base
 - α Cross-Arm angle
 - (B) $\tan \alpha = \frac{b}{2l}$ (B) $\cot \alpha = \frac{b}{2l}$

 - (C) $\tan \alpha = \frac{l}{2b}$
 - (D) $\cot \alpha = \frac{l}{2h}$
 - (E) Answer not known
- 38. For centre point steering, the camber angle
 - Should not exceed 2 degrees
 - (B) Between 2 to 5 degrees
 - (C) Between 5 to 10 degrees
 - (D) More than 10 degrees
 - **(E)** Answer not known
- 39. Semi forward chassis refers to vehicle in which
 - (A) Engine is fitted outside the driver cabin
 - (B) Engine is fitted behind the driver cabin
 - (C) Engine is fitted rear side of the vehicle
 - Half portion of engine is in the driver cabin and the remaining is (\mathcal{D}) outside the cabin
 - (E) Answer not known

40.	40. Which are the correct statements about superchargers?					
	(i)	Axial and radial compre turbine to form a turbo cl	ssors can be more adequately driven by			
	(ii)	Axial and radial flow com	apressors are of static type			
	(iii)	The advantage of turbo their use of recovered ex down stage	ochargers over superchargers stems from thaust gas energy during the engines blow			
	(A)	(i) and (iii) only	(B) (ii) only			
	(C)	(ii) and (iii) only	(D) (i), (ii) and (iii)			
	(E)	Answer not known				
2						
41.		e maximum temperature of f the order of	f the burned gas in the I.G. engine cylinde			
	(A)	$500-1000^{\circ}C$	(B) $1000 - 1500^{\circ}C$			
	(C)	$1500 - 2000^{\circ}C$	$2000 - 2500^{\circ}C$			
	(E)	Answer not known				
42.	Ignition lag is.					
	(A)	temperature	after injection to reach upto auto ignition			
	(B)	Time before actual fuel pump fuel	injection and the pump plunger starts t			
	(C)	time corresponding to a	ctual injection and top dead centre			
	(D)	Time corresponding to a	actual injection and bottom dead centre			
	(E)	Answer not known				
43.	Wit	h increase in intake temp	erature of charge, the delay period			
	(A)	Decreases	(B) First decreases then increases			
	(C)	Increases	(D) Not affected			
	(E)	Answer not known				

44.	The	rmosiphon cooling system uses the principle of
	(A)	Difference in pressures of hot and cold regions of coolant
	(B)	Difference in flow rates of hot and cold regions of coolant
	(C)	Difference in viscosities of hot and cold regions of coolant
	DY	Difference in densities of hot and cold regions of coolant
	(E)	Answer not known
45.		rument is recommended for checking the degree of antiframe ection in a heavy-duty diesel engine coolant
	(A)	Hydrometer
	(B)	Refractometer
	(C)	Spectrographic analyser
	(D)	Viscometer
	(E)	Answer not known
46.		fuel in the carburettor float bowl is kept at a constant level by the
	(4)	Float and needle valve
	(B)	Pressure regulator
	(C)	Opening of the throttle valve
	(D)	Fuel pump
	(E)	Answer not known
47 .		evice to relieve the vapour pressure developed in the carburettor due ne vaporisation of fuel in hot weather
	M	Anti-percolator
**	(B)	Discharge jet

(C)

(D)

(E)

Metering rod

Answer not known

Venturi

48.	The	opposed cylinder Engine has
	(A)	One Crankshaft and one cam shaft
	(B)	One Crankshaft and two cam shaft
	(C)	One Crankshaft and two cam shaft
	(D)	One Crankshaft and four cam shaft
	(E)	Answer not known
49.		function of Delivery valve in the fuel injection pump of a diese ne is
	(A)	To cut off the fuel communication between the pump & Nozzle when fuel pressure is reduced.
	(B)	To act as a non return valve for the fuel to come back to the pump.
	(0)	Both (A) & (B)
	(D)	None of the above.
	(E)	Answer not known
50.	Cavi	tation chances in wet liners of Engine gliner
	(4)	More than Dryliners
	(B)	Equal to Dryliner
	. (C)	Less than Dryliner
	(D)	No cavitation
	(E)	Answer not known
51.	In fo	ur stroke engines, can shaft rotates at of crank shaft
	(A)	Same speed
	P	Half the speed
	(C)	Twice the speed
	(D)	Four times the speed
	(E)	Answer not known
	100	and the first of the control of the

	(11)	Ammonia Slip
	(B)	Ammonia Sleep
	(C)	Ammonia Deposit
	(D)	Ammonia Catalyst
	(E)	Answer not known
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
53.	The	catalyst used in the SCR system is
	(4)	Rhodium based
	(B)	Copper based
	(C)	Vanadium based
	(D)	Cobalt based
	(E)	Answer not known
54.	Cata	alytic substance used in a catalytic convertor is
	(A)	Lithium
	(B)	Silicon
	(C)	Carbon
	(B)	Platinum

- (A) Supplying more oxygen
- (B) Supplying more fuel
- Controlling combustion rate
- (D) Cooling the engine
- (E) Answer not known

56.	The solid carbon particles are generated in CI engines due to				
	(A)	Lean fuel region	(B) Rich fuel region		
	(C)	Stoichiometric fuel region	(D) Both (B) and (C)		
	(E)	Answer not known			
57.		edium is the best catalyst to c nin a range of	control NO _x , but air-fuel ratio must b	be	
	(A)	. 15.6:1 to 15.8:1	(B) 13.2:1 to 13.4:1		
	(0)	14.6:1 to 14.7:1	(D) 10.1:1 to 10.2:1		
	(E)	Answer not known			
58.	In, position the CO emission is less				
	(A)	Sudden throttle	(B) Full throttle		
	40	Part throttle	(D) Fully closed		
	(E)	Answer not known			
59.	Identify the following statements which are correct.				
	Statement (1):- Carbon monoxide results from complete combustion in rich air fuel mixture due to an air deficiency.				
	Statement (2):- Hydrocarbon emissions are the result of inadequate oxygen being present to support complete combustion of the air / fuel mixture				
	Statement (3):- The formation of oxides of nitrogen (NO _x) are due to combustion of oxygen nitrogen at high temperature.				
	(A) Statements 1, 2 and 3 are correct				
	Statement 1 is incorrect and 2 & 3 are correct				
	(C) Statement 2 and 3 are incorrect and 1 is correct				
	(D)	Statement 1 and 3 are correct	et and 2 is incorrect		
	(E)	Answer not known			

- 60. _____ is a type of automatic suspension that controls the vehicle movement of the wheel receive to chess with an on board system.
 - (A) Active suspension
 - (B) Passive suspension
 - (C) Reactive suspension
 - (D) Semi passive suspension
 - (E) Answer not known
- 61. Equivalence Ratio is given by,

- (B) Actual Air fuel Ratio
 Stoichio metric Air fuel ratio
- (C) $\frac{Air\,Mixture\,Ratio}{Fuel\,Mixture\,Ratio}$
- (D) $\frac{\text{Fuel Mixture Ratio}}{\text{Air Mixture Ratio}}$
- (E) Answer not known
- 62. Traction control is initiated when
 - (A) Front wheels rotate freely
 - (B) Rear wheels is rotate freely
 - (C) All wheels rotate freely in 2WD vehicle
 - Driven wheel spins freely without vehicle movement
 - (E) Answer not known

sub controllers for the longitudinal The PID controller consists 63. and lateral dynamics. Only one (A) Two (C) Three (D) Not limited (E) Answer not known Statement (1): Decreasing suspension stiffness improves ride quality 64. and road holding. However, it increases rattle space requirement. Statement (2): Increased suspension damping reduces reasonant vibration at the sprung mass frequency. However, it also results in increased high frequency harshness. (A) Both statements (1) and (2) are incorrect Both statements (1) and (2) are correct (C) Statement (1) is correct and (2) is incorrect Statement (1) is incorrect and (2) is correct Answer not known **(E)** For a typical driveline modeling 65. Assertion (A): Vehicle resistive forces-rolling, aerodynamic, gradient, and inertial forces are calculated Sizing of the component-engine, clutch, transmission, Reason (R): drive shafts and final wheel drive axle assembly and drives. Both (A) and (R) are true, and R is the correct explanation of A Both (A) and (R) are true, and R is not the correct explanation of A **(B)** A is true and R is false (C)

(D) A is false and R is true

(E) Answer not known

C

66.	The	output of feedback control system must be a function of			
	(A)	Reference input			
	(B)	Reference output			
	(C)	Output and feedback signal			
	(B)	Input and feedback signal			
	(E)	Answer not known			
67.	An o	An open–loop control system			
	(A)	Has a controller k=1 in the closed loop system			
	(B)	Corrects for disturbance acting on the system			
	(C)	Responds well to incorrect system models			
		Must be altered manually to deal with disturbances			
	(E)	Answer not known			
68.		In yaw stability control under steer correction is done by applying the brakes at			
	(A)	Inner front wheel			
	(B)	Outer front wheel			
	(C)	Both wheels of front axle			
	(D)	Both outer wheels			
	(E)	Answer not known			
69.	ΑVe	chicle has			
	(A)	12 Degrees of freedom			
	(B)	10 Degrees of freedom			
	(C)	8 Degrees of freedom			
	D	6 Degrees of freedom			
	(E)	Answer not known			
		강경실 보이 많이 되고 있다면 보는 그는 사람들이는 말이 어떻게 되는 것이 없다는 것이다.			

The antilock brake system will come into action when the			
Wheel slip exceeds 25%			
(B) Wheel slip is less than 25%			
(C) Vehicle deceleration is very high			
(D) Load transfer to front axle is very high			
(E) Answer not known			
Consider a uniform rod of length 'l' cross sectional area 'A', young's modulus E, subjected to an axial tensile force F, The equivalent spring constant is			
(A) $\frac{AE}{Fl}$ (B) $\frac{Fl}{AE}$ (D) $\frac{l}{AE}$			
$\frac{AE}{l} \qquad (D) \frac{l}{AE}$			
(E) Answer not known			
Consider the following Statement:			
Assertion(A): Semi active Suspension system cannot cause the suspension system to become unstable			
Reason(R): Semi active system actively supply energy to the system and it also dissipates the energy.			
(A) is true and (R) is false			
(B) (A) is false and (R) is true			
(C) (A) and (R) are true and (R) is the correct explanation of (A)			
(D) (A) and (R) are true, and (R) is not the correct explanation of (A)			
(E) Answer not known			
In Full Car model can be Studied.			
(i) Pitching motion			
(ii) Bouncing motion			
(iii) Yawing motion			
(iv) Rolling motion			
(A) (i), (iii), (iv) (B) (ii), (iii), (iv)			
(C) (i), (ii), (iii) (i), (iv)			
(E) Answer not known			

74.	. Th	Lateral Force on the rolling tyre can be caused by the tyre to the direction of travel.
	(A)	
	(C)	
	(E)	(2) Both (11) and (0)
75.	Wł	nen the Load on the tyre increases, the cornering force generated will
	(A)	
	(C)	
	(E)	
76.	Ma	tch the following:
		Direction Force and Moment
	(a)	Longitudinal (1) Drag-Rolling Moment
	(b)	Lateral (2) Lift-Pitching Moment
	(c)	Vertical (3) Side Force-Yawing Moment
		(a) (b) (c)
	(A)	
	(B)	1 3 2
	(C)	2
	(D)	3 2 1
	(E)	Answer not known
77.	Con	sider the following statement:
		ertion (A): Improved cornering, braking and traction are obtained if the variation in normal tire loads are maximized
	Reas	son (R): The lateral and longitudinal forces generated by a tire depend directly on the normal tire load.
	(A)	(A) is true, but (R) is false
	(B)	(A) is false, but (R) is true
	(C)	Both (A) and (R) are true, and (R) is the correct explanation of (A)
	(D)	Both (A) and (R) are false, and (R) is not the correct explanation of (A)
	(E)	Answer not known
	.*	

CEAM/2022

- 78. _____ number of Jane way's comfort criterion are available to obtain the information regarding vibration tolerance.
 - (A) Two
 - Three
 - (C) Four
 - (D) Five
 - (E) Answer not known
- 79. An engine weighing 1784.5N supported by three helical spring and it operates at 900 rpm, with natural frequency (during design) is 24.3 rad/sec. Evaluate the stiffness of each spring
 - (A) 107413.8 N/m
 - (B) 35804 N/m
 - (C) 71609.2 N/m
 - (D) 17902 N/m
 - (E) Answer not known
- 80. The equation of free vibration of a system is $x + 36 \pi^2 x = 0$, then its frequency is
 - (A) 6 Hz
 - (B) 3π Hz
 - 3 Hz
 - (D) $6\pi \text{ Hz}$
 - (E) Answer not known

81.	The	duty cycle is associated with
	(A)	Analog signals
	(3)	Pulse width modulated signals

- (C) Crankshaft sensor signal
- (D) Emission control
- (E) Answer not known
- 82. Why are slip rings in an alternator necessary?
 - (A) They permit the stator to rotate
 - (B) They provide a high resistance connection to the stator windings
 - (C) They prevent a delta from forming
 - They permit current to flow through a rotating component called the rotor
 - (E) Answer not known
- 83. The frequency of dynamo generated d.c is
 - (A) 50 Hz
 - (B) 60 Hz
 - (C) 0 Hz
 - (D) 1 Hz
 - (E) Answer not known

- The following is a permanent type anti-freeze material used in air 84. conditioned cars. Denatured Alcohol (A) Ethylene glycol Glycerine (C) (D) Wood Alcohol Answer not known **(E)** The main aim of an automobile air conditioning system is to control 85. (A) Temperature and pressure Pressure and humidity (B) Humidity and temperature Dust in the air (D)
- 86. Dwell is the

(E)

- (A) Length of time it takes the points to close
- (B) Length of time the points are open

- Number of degrees of cam rotation that the points are closed
- (D) Number of degrees of cam rotation that the points are open
- (E) Answer not known

01.	To adjust the ightion timing
	(A) turn the cam on the camshaft
	turn the distribution in its mounting
	(C) install different centrifugal advances springs
	(D) readjust the contact points
	(E) Answer not known
88.	From alternator to battery the following device is necessary while charging
1 x .	(A) A capacitor
	(B) A solenoid valve
	(C) A rheostat
t, in	A full wave rectifier
	(E) Answer not known
89.	"Maintance free" batteries use about ————————————————————————————————————
	(A) 0.1
	(B) 0.3
	(C) 0.4
	(D) 0.6
	(E) Answer not known

The central gear of an epicyclic gear set is called a 90. Ring gear (A) Sun gear Planet gear (C) (D) Internal gear (E) Answer not known 91. The torque Converter has maximum efficiency at Lock up Low speed (B) (C) Stop High speed (D) . **(E)** Answer not known Maximum torque multiplication by the torque convertor occurs at 92. Low speed (A) High speed (B)

Stop

(D)

(E)

Medium speed

93.	$Th\epsilon$	e number of Shafts in a gear box will be	
	(A)	6	
	(B)	4	
	101		
	(D)	2	
	(E)	Answer not known	
94.	Gea	er box units emit Hissing noise, due to	
	(A)	Breakage of gear teeth	
	(B)	Starvation of oil I bearing	
	(C)	Low oil level in gear box	
	(D)	Wrong assembly of gear box	
	(E)	Answer not known	
95.		he transaxle slips out of gear, the caus	e could be except out the
	follo	wing,	
	(A)	improperly adjusted linkage	
	(B)	transmission loose on engine	
	(C)	dirt between the clutch cover and engine	
	(B)	worn out of constant mesh gears (or) syn	chronizer
	(E)	Answer not known	
CEA	M/202	2 30	c

96.	Clutch chattering (or) grabbing is noticeable			
	(A)	when engaging the clutch		
	(B)	at low speed		
	(C)	during idle		
	(D)	during acceleration		
	(E)	Answer not known		
		1.0°		
97.	The	tapered finger type or crown type spring is used in		
	(A)	Centrifugal clutch		
	(B)	Semi-centrifugal clutch		
	(0)	Diaphragm clutch		
	(D)	Cone clutch		
	(E)	Answer not known		
98.	Clut	ch slippage can be caused by all of the following except;		
	(A)	incorrect linkage adjustment		
	(B)	loose friction disk facings		
	(C)	grease on the facings		
	(D)	broken (or)weak pressure springs		

(E)

99.	Exc	essive fire wear at the middle is due to
	(A)	Low inflation pressure
	(B)	High inflation pressure
	(C)	Improper camber
	(D)	Improper toe-in setting
-	(E)	Answer not known
٠.,		
100.	Best	Spanner for Automobile work is the
	(A)	Open-Ended Type
	(B)	Combination Type
	(C)	Ring Type
	W/A	Socket Type
	(E)	Answer not known
101.	Nois trou	e from a rear axla drive, when going around a curve in dineates
	(1)	Inside the differential
	(B)	Caused by a wom ring gear
	(C)	Caused by a wom drive pinon gear
	(D)	Due to slippage of the clutch
	(E)	Answer not known
102.	The	Engine Starts, but Stops immediately, the causes would be
4. ¹	(A)	Carburettor overflow
	(B)	Chocked Siencer
	(C)	Seized Engine
	P	Both (A) and (B)
.*	(E)	Answer not known

103. The following possible cause and correction measures required, when Engine will not Crank? - Run down Battery Cause Remedies/Correction - Recharge (or) replace battery - Defective fuel system Cause (B) Remedies/Correction - Check fuel system (C) Cause Defective starting motor Remedies/Correction - Repair (or) Replace starting motor - Bad Connection in starting circuit (D) Cause Remedies/Correction - Repair (or) clean and tighten the starting circuit Answer not known **(E)** 104. To help reduce the stock of engagement, the frictions disc has a series of waved Cusshiore pads (A) **Facings (B)** Cusshiore springs Discs **(D)**

Answer not known

(E)

105.	The	transmission may stick in gear became,
: "	(4)	The gear shift linkage is out of adjustment
	(B)	Excessive clutch pedal freeplay
	(C)	Worn out bearings
	(D)	Synchronizer damaged
	(E)	Answer not known
106.		person under the age of shall drive a motor vehicle in public place.
	(A)	17
	(B)	18
	(C)	19
	(D)	21
	(E)	Answer not known
107.	Dies	el particulate Filter [DPE] is used to control emission.
	(A)	Hydro carbon [HC]
	(B)	Carbon monoxine [CO]
	(6)	Particulate matter [PM]
	(D)	Nitrogen oxides $[NO_x]$
	(E)	Answer not known

108.	Chap	pter VIII of motor vehicle act deals with			
	(A)	Licensing of driver			
	(B)	Vehicle Registration			
	407	Motor vehicle insurance			
	(D)	Miscellaneous			
	(E)	Answer not known			
109.	As p	per resolution adopted by WP29 of UNECE falls un	nder		
	categ	gory N.			
	(A)	Motor vehicles with less than 4 wheels			
	(B)	Power driver vehicles with a least 4 wheels for carriage	e of		
		passengers			
	(C)	Agricultural and forestry tractors			
	DI	Power driver vehicles with at least 4 wheels for carriage of good	ds		
	(E)	Answer not known			
110.	Thinner is added to the paint in order to				
	(A)	Make pigments and resins mix easily			
	(B)	Reduce paint viscosity			
	(C)	Make paint film hard			
	(D)	Good apperance			
	(E)	Answer not known			

111.		is the longitudinal framing of the roof at the joining.
	(A)	Can't panel
	(B)	Can't rail
	(C)	Cowl panel
	(D)	Drip rail
	(E)	Answer not known
		보는 사람들은 사람들은 마음을 하는 것이 되었다. 그런 사람들은 사람들은 사람들이 되었다.
112.	Whie desig	ch one of the following is incorrect with respect to integral bus body
	(A)	Lower floor level
	(B)	Supports rear engine location
	(0)	Easy repair and maintenance
	(D)	Low noise level in passenger region
	(E)	Answer not known
113.	In a	Driver's seat design the brake pedal force is
	4	Directly proportional to knee angle
	(B)	Inversely proportional to knee angle
	(C)	Constant to knee angle
	(D)	Exponentially to knee angle
	(E)	Answer not known
, i		

L14.		cross section test re	gion	is adopted in au	itomotive tes	sting.
	(A)	Circular	(B)	Elliptical		
	(3)	Rectangular	(D)	Triangular		
	(E)	Answer not known				
115.	Whic	ch of the following statements	are t	rue for Aerodyn	amic Noise?	
•	(i)	Noise from wing mirror, Aeria	al an	d Door Handles		
	(ii)	Noise created by door seals	•			
	(iii)	Noise from the under side of t	he h	ood		
	(iv)	Noise from the exhaust system	m			
	(A)	(i) and (iii) only				
	(P)	(i) and (ii) only	•			
1.5	(C)	(iii) and (iv) only				
	(D)	(ii) and (iv) only				
	(E)	Answer not known				
116.	Hato	ch back cars are subjected to di	rt fo	rmation at		
		Rear wind screen	* : :			
	(B)	Front wind screen				
	(C)	Front grille				
	(D)	The Car roof			· · · · · · · · · · · · · · · · · · ·	
	(E)	Answer not known				
	_ >					
117.		ich one of the following infl ficient of a car?	uenc	e the increase	of aerodyn	ıamic
	VA)	Reducing roof Camber				
	(B)	Rounding off bonnet edges				
	(C)	Rounding of A – Pillars				*
	(D)	Increasing sider Camber				
	(E)	Answer not known				
					Marijana Marijana	

118	S. Spo	rt car with fold flat wind screen is called
		Torpedo
	(B)	Estate car
	(C)	Limousine
	(D)	Sedan
·	(E)	Answer not known
119	. Jacl	king points of a car must always be located in a zone of
	(A)	High Bending Strength
	(B)	Moderate Bending Strength
	(C)	Moderate Twisting Strength.
	(1)	High Twisting Strength
	(E)	Answer not known
120.	The	chemicals that undergo reaction during airbag deployment are
	-	——— to produce N_2 gas.
e e	(A)	$Na_2O_3 + NaCl + NO_2$
	(B)	$Na_2O_3 + KNO_3 + NO_2$
	(C)	$NaN_3 + NaCl + SiO_2$
•	(D)	$NaN_3 + KNO_3 + SiO_2$
	(E)	Answer not known
121.	'Fadi	ing' action occurs in the brake linings due to
	(1)	Continuous brake application
1.	(B)	High speed of vehicle
	(C)	Low speed of vehicle
	(D)	Worn brake linings
	(E)	Answer not known

38

CEAM/2022

122.	In ca	ase of front wheel disc brake	e, the caliper assembly is secured to
	(A)	King pin	(B) Steering gear box
	(0)	Steering knuckle	(D) Tie rod
	(E)	Answer not known	
123.	The	brake shoes used in drum b	rakes are ———.
	(A)	Front and rear shoes	
	(B)	Dependent and Independe	nt shoes
	(0)	Leading and trailing shoes	
	(D)	Floating and sliding shoes	
	(E)	Answer not known	
124.	Whi (1)	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	o brake shoe y shoe is usually longer than that on a
		primary shoe.	
	(2)	Rivitted lining is secured rivets	to the shoe by a group of hardened steel
•	(1)	(1) only	(B) (2) only
	(C)	Both (1) and (2)	(D) Neither (1) nor (2)
	(E)	Answer not known	
125.	A re	ear disc brake with an integr	cal parking brake has
	(A)	a separate fluid reservoir	for parking brake

CEAM/2022 [Turn over

a piston that can be operated hydraulically or mechanically

a small brake drum mounted on the rear axle half shaft

two shoes in a hub mounted drum brake

Answer not known

(C)

(E)

126	. Whi	ich of the following is / ar	e correct with respect to rear axle housing
	(i)	One piece housing is ca	
	(ii)	In Banjo type, the corcarried. Which is bolted	nplete differential is carried in a separate
	(iii)	In split type if there is be removed as an unit a	any fault, the whole of the rear axle has to
	(A)	(i), (ii) only	(B) (ii), (iii) only
	(C)	(i), (iii) only	(D) (i), (ii), (iii)
	(E)	Answer not known	
127.			transverse leaf springs is a tendency of a it runs fast on sharp corners.
	(A)	Pitch	(B) Yaw
	(0)	Roll	(D) Slide
	(E)	Answer not known	
128.		arrangement in automo	bile used to maintain correct alignment of
	(A)	Coil springs	(B) Torsion Bars
	400	Torque Rods	(D) Stabilizer unit
	(E)	Answer not known	
129.	When	n the shock absorber i ugh the piston orifices an	s compressed or telescoped, fluid passes
•	(A)	Out of the reservoir	
	(2)	Into the upper part of th	ne cylinder
	(C)	Into the piston rod	
	(D)	Out of the piston rod	
	(E)	Answer not known	
. 11			

CEAM/2022

130.	In p	metric tire designation of P265/70 R17, the value 17 represents
	(A)	Wheel diameter
	(B)	Rim diameter
	(C)	Wheel width
	(D)	Rim width
	(E)	Answer not known
131.	Whi	ch part of the automobile tyre is subjected to greatest flexing action?
	(A)	Bead
	D	Sidewall
	(C)	Shoulder
	(D)	Tread
	(E)	Answer not known
132.		sectional width and sectional height of a tyre designated as 180/60 R 2 H is ——————————————————————————————————
	in the second se	[사용] 이번 [1886] - 사용 - 사용 [1886] - 사용 [1886
	(A)	180 mm and 60 mm
	(B)	60 mm and 180 mm 180 mm and 108 mm
		60 mm and 108 mm
	(D) (E)	Answer not known
	(12)	Aliswer not known
133.	The	high frequency and low amplitude vibration are absorbed by
	(A)	Spring
	(11)	
	(B)	
	(B)	Damper
	4	Damper Wheel and Seat
		Damper

134.		system selectively applies brakes. when one or more sels are slipping, so that the remaining wheels gains speed.
	(A)	Anti-lock braking
	(15)	Traction control
	(C)	Tire pressure monitoring
	(D)	Lane assist
	(E)	Answer not known
135.		en a vehicle is Negotiating left turn, the torque due to differential
	actio	on is described and the second of the secon
	(A)	Zero on both wheels
	(B)	Greater in left wheel than right wheel
	(C)	Greater in right wheel than left wheel
	(D)	Equally divided to both wheels
	(E)	Answer not known
l36.	Nois troul	e from a rear wheel drive axle when going around a curve indicates ble
	(A)	Caused by a worn ring gear
	(B)	Caused by a worn drive – pinion gear
	(C)	Due to slippage of the clutch
	(B)	Inside the differential
	(E)	Answer not known

•		
137.	Whic	h of the following is/are correct?
	1 A	worm and roller type steering gear is also called as Gemmer gear
	2. F	Pack and pinion type steering gear is also called as Ross gear
	(11)	1 only (B) 2 only (C) Neither 1 per 2
		Both 1 and 2 (D) Neither 1 nor 2
		Answer not known
138.	In a	steering gear box, the forward and reverse efficiency is defined by ———————————————————————————————————
	/A \	Output work at steering wheel ×100%;
	(A)	Input work at drop arm
		Output work at steering wheel ×100%
		$\frac{\text{Output work at steering wheel}}{\text{Input work at drop arm}} \times 100\%$
	(T)\	Input work at steering wheel ×100%;
	(B)	Output work at drop arm
		Input work at steering wheel ×100%
		Output work at drop arm
		Output work at drop arm ×100%;
	(C)	Output work at drop arm Input work at steering wheel ×100%;
		Output work at steering wheel 100%
		$\frac{\text{Output work at steering wheel}}{\text{Input work at drop arm}} \times 100\%$
	(D)	Input work at drop arm Output work at steering wheel
		Input work at steering wheel
		$\frac{\text{Input work at steering wheel}}{\text{Output work at drop arm}} \times 100\%$
	(E)	Answer not known
400	` '	
139.	The twher	turning circle radius of outer rear wheel is expressed by
		wheel track

(B) $\frac{b}{\sin \phi} + \left[\frac{a-c}{2}\right]$ (D) $\frac{b}{\tan \phi} + \left[\frac{a-c}{2}\right]$

(E) Answer not known

c \rightarrow distance between pivots Q \rightarrow angle of inside lock $\phi \rightarrow$ angle of outside lock

 $b \rightarrow wheel base$

(C)

140. Stub axle may be

- (A) Dropped type
- (B) Elliot type
- (C) Three quarter floating type
- (D) Fully floating cars
- (E) Answer not known

141. Transfer case is employed for

- (A) Six wheel drive vehicles
- Four wheel drive vehicles
- (C) Multi axle vehicles
- (D) Passenger cars
- (E) Answer not known

142. Pre combustion chamber engines produce

- (A) High mean effective pressures
- Low mean effective pressures
- (C) Moderate mean effective pressures
- (D) Very high mean effective pressures
- (E) Answer not known

143.	A mu	altigrade oil such as sae low-30 means that the oil has properties of
	(A)	10 viscosity at hot and 30 viscosity at cold
	New	10 viscosity at cold and 30 viscosity at hot
	(1 D)	하는 이 보통한 시에 보고 시험하는 사람들은 사람들이 다른 생각하는 이 모든 사람들이 되었다.
	(C)	10 viscosity at both hot and cold
	(D)	30 viscosity at both hot and cold
	(E)	Answer not known
144.	The	type of lubricating system generally adopted in two-stroke petrol
		ne, like scooters and motor cycles
	(A)	Dry sump lubrication system
	(B)	Pressure lubrication system
	(C)	Petrol lubrication system
	(D)	Splash lubrication system
	(E)	Answer not known
145.	The	radiator cap contains two valves these are the
	(A)	Pressure valve and by pass valve
	(B)	Atmospheric valve and vacuum valve
	(C)	Pressure valve and vacuum valve
	(D)	By pass valve and connector valve
	(E)	Answer not known

140.	The	The example for the variable venturi carburettor is				
	(A)	Carter carburettor	(B)	Solex carburettor		
	40	S.U. carburettor	(D)	Zeraitte carburettor		
	(E)	Answer not known				
147.	4.,	the variable venturi carburet crolled by	tor, t	he position of venturi valves i		
	(A)	Slow idle cam	(B)	Fast idle cam		
	(C)	Venturi Vacuum	(D)	Intake manifold vacuum		
	(E)	Answer not known				
148.	Hot	- Idlong condition causes				
	(A)	Shutting - off fuel supply				
	(B)	Shutting - off air supply				
		Excessively enriching the mi	xture			
	(D)	Excessively leaning the mixt				
	(E)	Answer not known				
140	O					
149.	The			aization process is in the range o		
	(A)	20 -100 microns		100 - 500 microns		
	(C)	10 - 20 microns	(D)	5 - 10 microns		
	(E)	Answer not known				
150.		nber '1' is assigned to start of retical Dual cycle. Heat suppli	- T	pression in the PV diagram of a ocess is given by		
	(A)	Process 1-2	(B)	Process 2-3		
	(C)	Process 2-3 and process 3-4	(D)	Process 2-3 and process 4-5		
	(E)	Answer not known				

46

CEAM/2022

151.	Whi	ch of the following causes the photochemical smog?
	(A)	Excess O_2
	(B)	CO and CO ₂
	(C)	Soot and particulate Matter
	(B)	NO _x and HC
	(E)	Answer not known
152.	Orde	er of affinity towards Soot formation in the premiered flame is
	(41)	Alcohols < Parafins < Olefins < Acetylene
	(B)	Aromatics < Parafins < Olefins < Acetylene
	(C)	Aromatics < Olefins < Parafins < Acetylene
	(D)	Acetylene < Olefins < Parafins < Aromatics
	(E)	Answer not known
153.	In, f	lame Ionization Detector the inert gas used is
	(A)	Argon
	(B)	Neon
	(0)	Helium
	(D)	Nitrogen
	(E)	Answer not known
154.	emis	thetic way of generating test data sets, to evaluate the exhaust gas ssin content in laborious environment to certify the vehicle emission pliances. This is attained by
	(A)	Fuel consumption analysis
	(B)	Crash test
	(C)	Product life cycle
	0	Drive cycle analysis
	(E)	Answer not known

100.	. Ош	one emission is controlled by
· · · · · · · · · · · · · · · · · · ·	(A)	Adding lead with fuel
	P	Fumigation
	(C)	Low pressure injection
	(D)	High engine load
	(E)	Answer not known
150	3.7	
156.	New	ver catalytic convertors contain a base metal called
	(A)	Rhodium
	(B)	Silver
	(2)	Cerium
	(D)	Copper
	(E)	Answer not known
157	Tn C	Tonomas flows the same than the same to the same to the same that the same to
101.		I engines flame quenching ——— can be minimized by
	(A)	
* 4,1 * -	(B)	Reducing the squish area
	(C)	Increasing the compression ratio
	(D)	Exhaust gas recirculation
	(E)	Answer not known
158	Evar	porative emission in SI engines accounts for the emission of
100.		
	(A)	50% CO
	(B)	50% HC
	(C)	20% CO
	(E)	25% HC
	(E)	Answer not known

159.		II emission norms for 4-wheeles for entire country in India was duced in the year
	(A)	2000
•	(B)	2005
	(9)	2010
	(D)	2015
	(E)	Answer not known
160.	Plati	num and Rhodium promote two oxidation of
	(41)	CO and HC
	(B)	CO and NO _x
	(C)	CO
٠	(D)	HC and NO _x
	(E)	Answer not known "
161.	Acco	rding to $BS-VI$ emission standards, the sulphur content of diesel is than
	(A)	30 ppm
	(B)	50 ppm
	C	10 ppm
	(D)	100 ppm
	(E)	Answer not known
162.		ch one of the following reason is not contributing HC formation in agine?
	(A)	Exhaust valve leakage
•	(B)	Flame quenching in crevices
	(C)	Misfired combustion
•	DI	Impingement of fuel spray
	(E)	Answer not known

163. T	The 1	responses time of	zirconium	dioxide	type o	xygen sensor	range	r from
· (2	A)	5 to 10 ms				•		
V	B)	15 to 30 ms		* · · · · · · · · · · · · · · · · · · ·				
	C	25 to 50 mg						

- (C) 35 to 50 ms
- (D) 55 to 70 ms
- (E) Answer not known

164. Increasing a proportion gain will

- Increase the overshoot, decrease the steady state error
- (B) Decrease the overshoot, increase the steady state error
- (C) Increase the overshoot, increase the steady state error
- (D) Decrease the overshoot, decrease the steady state error
- (E) Answer not known..
- 165. Choosing a PI controlles to stabilise a control system means choosing the value of K_p and K_i , such that
 - (A) There is no overshoot
 - (B) The steady state error is zero
 - (C) The closed-loop characteristic equation has roots on the real axis
 - The closed-loop characteristic equation has roots in the LHP.
 - (E) Answer not known
- 166. Emissions of HC, CO and NOx in SI engines are relatively low for
 - (A) $\lambda = 0$
 - (B) $\lambda = 1$
 - (C) $\lambda = 2$
 - (D) $\lambda = 3$
 - (E) Answer not known

167. Choose the correct answers:

- (1) Active suspension controls both the springing an damping functions.
- (2) Active suspension control is useful for enhancing safety and comfort while towing heavy vehicles
- (3) Damping element is set to concentrate on wheel movements.
- (1) Only (A)

(B) Both (1) and (2)

(2) Only (C)

- (1), (2) and (3)
- Answer not known (E)

168. Preview control system is required for the following

- Active suspension control (B) Emission control

Traction control (C)

- (D) Yaw stability control
- Answer not known **(E)**
- 169. The damping ratio of over-damped system is __
 - Equal to 1 (A)

(B) Equal to 0

(C) Less than 1

- Greater than 1
- Answer not known **(E)**

170. The dynamic performance of the lambda control is strongly restricted by

(A) $\Delta \lambda_g < 10\%$

(B) $\Delta \lambda_{g} > 10\%$ (D) $\Delta \lambda_{g} > 3\%$

 $\Delta \lambda_{g} < 3\%$

- (E) Answer not known

171. What are the pole, P, and Zero, Z, of the transfer function $G(S) = \frac{S+2}{S+3}$

- (A) P = 2, Z = 3
- (B) P = 3, Z = 2
- (C) P = -2, Z = 3
- (b) P = -3, Z = -2
- (E) Answer not known

172. In an engine control system if $\lambda=1.0$, N_{ox} , Co and HC conversion efficiency will be ______. If $\lambda>1$, then ______ decreases and _____increases.

- (A) minimum, Nox and HC
- (B) maximum, HC and Nox
- maximum, Nox and HC
- (D) minimum, HC and Nox
- (E) Answer not known

173. To Examine and Optimize the roll vibration of a Vehicle

- (B) Quarter car model is used
- (C) Full car model is used
- (D) No such models used
- (E) Answer not known

174. In an unstable motion of a vehicle, For a negative damping Ratio, The Amplitude Decreases with time (A) The Amplitude Increases with time Become Stable (C) There is no Negative Damping ratio (D) Answer not known **(E)** 175. A passenger car has weight of 20 KN, and wheel base 3.0m, the weight distribution of front and near axle are 55 and 45% respectively. Determine the characteristic speed for under steer co-efficient of the car is 0.02. (B) 39.5 m/s 37.45 m/s (A) 38.3 m/s (D) 39.8 m/sAnswer not known 176. A Vehicle will have over steer characteristics when Slip angle of front wheels more than rear wheel (A) Slip angle of rear wheels more than front wheel Side slip angle is high (C) Front axle weight is higher than rear axle (D) Answer not known **(E)** 177. There are Three forces and Three moments acting on the Tyre from the ground, They are Rolling force, Overturning force, Aligning force and Tractive

CEAM/2022

Turn over

Rolling Resistance Moment, Overturning Moment

Tractive Force, Lateral Force, Normal Force and Overturning Moment, Rolling Resistance Moment and Aligning Torque moment

Camber Force, Contact Force, Slip Force and Carcass Moment,

Torque Force, Drag Force, Driving Force and Hysteresis Moment,

moment, Lateral moment, Normal moment

Sidewall Moment, Bead Moment.

Answer not known

(C)

(D)

(E)

C

178.	inde	degree of freedom of a system denotes the no of pendent necessary to describe the position of all parts of system at any instant of time.
	(A)	Minimum, Linear displacement
	(B)	Minimum, Coordinates
	(C)	Maximum, Coordinates
	(D)	Maximum, Linear displacement
	(E)	Answer not known
179.	For a	an under Damped Harmonic Oscillator, Resonance
	(A)	Occurs when excitation frequency is greater than undamped natural frequency
	(B)	Occurs when excitation frequency is less than undamped natural frequency
	(C)	Occurs when excitation frequency is equal to undamped natural frequency
	(D)	Never occur
	(E)	Answer not known
180.	mach	is an Auxillary mass spring system that is attached to a nine that is experiencing large amplitude vibrations due to nearnance conditions.
	(A)	Non-linear vibrations
	(B)	Random vibrations
	(C)	Free vibrations
	D	Vibration absorber
	(E)	Answer not known
		어느 그런 그들이 모임한 아는 아들은 아들은 아이를 보았다. 한 민국의 이번 모두 모든 것이

181.		sider three springs with s					
	$K_3=1$	00 N/m. The equivalent spr					
	serie		vhen three	springs a	are in	paralle	el is
•		N/m.			:		
	(A)	170 and 0.08					
	(B)	0.08 and 170					
	(2)	12.5 and 170					
	(D)	170 and 12.5					
	(E)	Answer not known					
1							
182.	The	damping capacity of suspen	sion damp	er is varie	d conti	nuousl	y in
	case						
	(A)	Torsion bar suspension					
	(B)	Coil spring suspension					
	(0)	Semi-active suspension syst	em				
	(D)	Active suspension system					
•	(E)	Answer not known					
183.	Stra	in gauge type sensors are use	ed to measu	ıre			
•	(A)	rpm					•
	(B)	torque		Salay a salay M			
	(C)	temperature					
	(D)	flow rate			*		· · · · ·
	(E)	Answer not known					
							. •

- 184. Which of the following statements are correct about AC generator?
 - 1. The stator is a rotating magnetic field inside the alternator.
 - 2. Increasing field current through the coil increases the strength of the magnetic field.
 - (A) 1 and 2 correct
 - (B) 1 and 2 incorrect
 - (C) 1 only correct
 - 2 only correct
 - (E) Answer not known
- 185. The purpose of the pull-in winding in the operating solenoid of a pre-engaged starter motor is to
 - (A) Hold the pinion in mesh
 - (B) Pull the pinion out of mesh
 - (C) Hold the pinion out of mesh
 - Pull the pinion in to mesh
 - (E) Answer not known
- 186. A voltmeter is connected between the main starter terminal and earth.
 On cranking the engine, the reading should be
 - No more than 0.5 v below battery voltage
 - (B) Approximately 0.5 v above battery voltage
 - (C) The same as battery voltage
 - (D) More than battery voltage
 - (E) Answer not known

187. The ignition coil is a

- (A) Voltage distributor
- Step up transformer
- (C) Step down transformer
- (D) Current Amplifier
- (E) Answer not known

188. As the engine speed increases, the spark timing should be

- (A) Retarded
- Advanced
- (C) Kept constant
- (D) after TDC
- (E) Answer not known

189. Match the following:

- (a) Ignition coil
- (b) Ignition Distributor
- (c) Ignition switch
- (d) Battery

- 1. Connects ignition coil to battery
- 2. To ignite the compressed Air fuel mixture
- 3. A Fast acting switch, to open and close the current flow to the coil
- 4. To raise the battery voltage to a high voltage
- 5. Supplies current to the ignition system
- (a) (b) (c) (d)
- (A) 4 3 1 2
- (B) 3 4 5 1
- 4 3 1 5
- (D) 3 4 5 2
- (E) Answer not known

190.	The	e most widely used bat	tery	in automobile is
	(A)	Alkaline battery		
	(B)	Lead acid battery		
	(C)	Lithium – Ion batter	°y	
	(D)	Zinc-air battery		
	(E)	Answer not known		
191	The	duration of a high rat	e dis	scharge test should not exceed about
		10 Seconds	o and	onargo tobt biloura not exceed about
	(A) (B)	30 Seconds		는 이 회사를 하는 이번 시장보고 그렇다.
	(C)	50 Seconds		
100 miles 100 miles	(D)	70 Seconds		
	(E)	Answer not known		
100	3.5			
192.		tch the following:		
	(a)	Hydrometer	1.	To determine the load to be placed on the battery
	(b)	Charge Indicator	2.	To measure the terminal voltage of a
				battery
	(c)	Battery Load tester	3.	State of charge for a vent cap battery
			4.	State of charge for a maintenance free
•				battery
		(a) (b) (c)		
	(A)	4 3 1		
	(B)	4 3 2		
	(C)	3 4 2		
	DY	3 4 1		
	(E)	Answer not known		

193.		n the sungear is held and the planet carrier is turned, the epicyclic train provides
.*	(A)	Speed reduction
	D	Speed increase
	(C)	Direct drive
	(D)	Reverse
	(E)	Answer not known
•		
194.	In to	rque converter, the torque multiplication is achieved by using
	(A)	Pump
•	(B)	Turbine
	(0)	Stator
	(D)	Impeller
	(E)	Answer not known
195.		sliding mesh gear box, the following is valid when the transmission utral
	(21)	Only the clutch shaft gear is connected to the counter shaft gear
	(B)	Only the clutch shaft gear is connected to the main shaft gear
	(C)	Only the clutch shaft gear is connected to idler gear
	(D)	Only the main shaft gear is connected to idler gear
	(E)	Answer not known
196.		advantages of using helical gears rather than spur gears in a smission are
	(A)	Strength and cost
	(B)	Strength and less end thrust

Noise level and strength

Noise level and economy

Answer not known

(D)

(E)

197.	The clute	part of a clutch assembly which hold's the pressure plate against the h plate is
·	(A)	Release lever
•	(B)	Strut's
	(0)	Spring's
	(D)	Thrust bearing's
	(E)	Answer not known
198.	Type	of clutch is used in motor cycles
	(A)	Single plate clutch
* * * * *	D	Multiplate clutch
	(C)	Cone clutch
	(D)	Semi - centrifugal clutch
	(E)	Answer not known
	surfa (A)	multiplate friction clutch with 'n' plates, the number of active ces 'n _a ' for transmission power is $n_a = 2n$ $n_a = (n-1)$
		$n_a = (n-1)$ $n_a = (2n-1)$
		$n_a = 2(n-1)$ $n_a = 2(n-1)$
		$n_a - 2(n-1)$ Answer not known
	(12)	Answei Hot Khowh
200	mi ·	
200.		lutch plate is hold in between and pressure plate
		flywheel
	1. 1.	gear box
		engine
	(D)	
		propeller shaft
		propeller shaft Answer not known

CEAM/2022 62