Question Booklet No. :		CEEE/2022			
	Register				
	Number				

2022 PAPER – I ELECTRICAL ENGINEERING (Degree Standard)

Duration: Three Hours

[Total Marks: 300

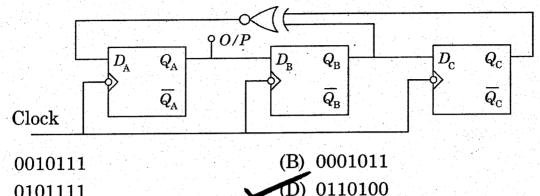
Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. You will be supplied with this question booklet 15 minutes prior to the commencement of the examination.
- 2. This question booklet contains 200 questions. Before answering the questions, you shall check whether all the questions are printed serially and ensure that there are no blank pages in the question booklet. If any defect is noticed in the question booklet, it shall be reported to the invigilator within the first 10 minutes and get it replaced with a complete question booklet. If the defect is reported after the commencement of the examination, it will not be replaced.
- 3. Answer all the questions. All the questions carry equal marks.
- 4. You must write your register number in the space provided on the top right side of this page. Do not write anything else on the question booklet.
- 5. An answer sheet will be supplied to you separately by the room invigilator to shade the answers.

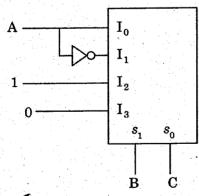
 Instructions regarding filling of answers etc., which are to be followed mandatorily, are provided in the answer sheet and in the memorandum of admission (Hall Ticket).
- 6. You shall write and shade your question booklet number in the space provided on page one of the answer sheet with BLACK INK BALL POINT PEN. If you do not shade correctly or fail to shade the question booklet number, your answer sheet will be invalidated.
- 7. Each question comprises of five responses (answers): i.e. (A), (B), (C), (D) and (E). You have to select ONLY ONE correct answer from (A) or (B) or (C) or (D) and shade the same in your answer sheet. If you feel that there are more than one correct answer, shade the one which you consider the best. If you do not know the answer, you have to mandatorily shade (E). In any case, choose ONLY ONE answer for each question. If you shade more than one answer for a question, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 8. You should not remove or tear off any sheet from this question booklet. You are not allowed to take this question booklet and the answer sheet out of the examination room during the time of the examination.

 After the examination, you must hand over your answer sheet to the invigilator. You are allowed to take the question booklet with you only after the examination is over.
- 9. You should not make any marking in the question booklet except in the sheets before the last page of the question booklet, which can be used for rough work. This should be strictly adhered to.
- 10. Failure to comply with any of the above instructions will render you liable for such action as the Commission may decide at their discretion.


SPACE FOR ROUGH WORK

1.	. Sulphation in a lead-acid battery occ	urs due to
	(A) Heavy discharging	(B) Fast charging
\	(C) Incomplete charging	D) Trickle charging
	(E) Answer not known	
2.	in the discharge rate, for a g	given battery results in a ————
	in the amount of electrical energy the	at can be delivered.
	(A) decrease, decrease (B) decrease, increase
	(c) increase, decrease (D) increase, increase
	(E) Answer not known	
3.	. At gradient height the shear force is	
	(A) minimum	B) zero
,**;	(C) one	D) maximum
	(E) Answer not known	
*.		
4.	. Practical efficiency obtained using vange of	wind mills is approximately in the
	(A) 5 to 10%	B) 10 to 30%
	(C) 30 to 50%	D) 50 to 80%
	(E) Answer not known	
5.	The wind intensity can be described by	o y
	(A) Reynolds Number (I	B) Mach Number
	(C) Froude Number	5) Beaufort Number
	(E) Answer not known	

6.	Whie sche	ch one of the following statement is <u>not</u> true for a micro hydro me?
	(A)	A complicated and sophisticated control scheme is used
	(B)	It has a capacity less than 100 kW
	(C)	It is used where a grid does not exist
	(D)	Power is generated for local use only
	(E)	Answer not known
•		
7.	Whi	ch of the following causes the least pollution when burnt?
	(A)	Petrol (B) Diesel
	(C)	Coal Natural gas
	(E)	Answer not known
8.	A gr	id-interactive solar system
	(A)	Always supplies power to the grid
	(B)	Always receives power from the grid
	(0)	Supplies and receives power from grid as required
	(D)	Works only when grid fails
	(E)	Answer not known
9.	The hori	angle in the horizontal plane between one line due south and one zontal projection of the normal to the inclined plane surface is
	(A)	Slope
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(B)	Solar Azimuth angle
	(C)	Surface Azimuth angle
	(D)	Zenith angle
	(E)	Answer not known


CEEE/2022

Assuming that all the flip flops are in reset initially. The count sequence 10. observant Q_A is

- (A)
- (C) 0101111
- Answer not known (E)
- Race condition occurs in an asynchronous sequential circuit due to 11.
 - the usage of more than 2 bits for state assignment (A)
 - more than one output in the circuit (B)
 - more than one change in state values during state transition (C)
 - use of T flip flops in the circuit design (D)
 - Answer not known (E)

A 4×1 MUX is used to implement a 3-input Boolean function. The 12. Boolean function F(A, B, C) implemented is

- $F(A, B, C) = \Sigma(1, 2, 4, 6)$
- (B) $F(A, B, C) = \Sigma(1, 2, 6)$
- $F(A,B,C) = \Sigma(1,5,6)$
- (D) $F(A, B, C) = \Sigma(1, 5, 6)$
- Answer not known **(E)**

13. A circuit that produces a per dc supply voltage is			eriodic waveform in its output with only the		
	(A)	Amplifier	(B) Oscillator		
	(C)	Rectifier	(D) Clipper		
	(E)	Answer not known			
14.	and	and the state of t	ngton pair and Emittor follower is ———————————————————————————————————		
		β , 2β , 1 , 1	(B) 2β , β , 2, 1		
•	(0)	β^2 , β , 1, 1	(D) β , β^2 , 1, 2		
	(E)	Answer not known			
15.	for	1 μ S and the amplif	ven by a 200 kHz signal. The transistor is ON ier is operating over 100% of its load line. If $s_{sat} = 0.2 \text{ V}$, the average power dissipation is		
	(A)	0.4 mW	(B) 4 mW		
	(C)	40 mW	(D) 4 W		
	(E)	Answer not known			
16.	the c	change in collector cur	ed to provide negative feedback for neutralising rent.		
	(A)	Voltage divider bias			
	(B)	Base bias			
	(C)	Emitter feedback bia			
	(D)	Collector feedback bi			

(E) Answer not known

- 17. The energy gap in a semi conductor,
 - (A) increases with temperature
 - (B) does not change with temperature
 - decreases with temperature
 - (D) no energy gap will be there
 - (E) Answer not known
- 18. Assume that D_1 , D_2 are ideal diodes. The value of current I is

- (A) 0 mA
 - (B) 0.5 mA
 - (C) 1 mA
 - (D) 2 mA
 - (E) Answer not known
- 19. In N type semi conductor, there are
 - (A) No majority carriers
 - (B) Holes as majority carriers
 - (C) Immobile negative ions
 - (D) Immobile positive ions
 - (E) Answer not known

- 20. Salient pole alternators are used when the
 - (A) speed of the alternator is low and medium
 - (B) power required is large
 - (C) speed of the alternator is high
 - (D) voltage generated is high
 - (E) Answer not known
- 21. In a generating synchronous machine carrying load
 - (A) E_f leads V_t by an angle δ
 - (B) E_f lays V_t by an angle δ
 - (C) Ef and Vt are in phase
 - (D) E_f and V_t are in phase opposition
 - (E) Answer not known
- 22. The maximum electrical power output of a synchronous generator is

$$(A) \quad \frac{V_t E_f}{X_S}$$

(B)
$$\frac{V_t^2}{X_S}$$

(C)
$$\frac{E_f^2}{X_S}$$

(D)
$$\frac{X_S}{V_t E_f}$$

- (E) Answer not known
- 23. In a synchronous machine, the induced emf phasor
 - (A) leads the flux phasor by 90°
 - (B) is in phase with the flux phasor
 - (C) lags behind the flux phasor by 90°
 - (D) is in phase opposition to the flux phasor
 - (E) Answer not known

24.	A 4 pole, 50 Hz induction motor is running at -2% slip. The actual speed of the rotor and its made of operation is			
	(A) 1500 rpm motor (B) 1470 rpm motor (C) 1530 rpm induction generator (D) 1560 rpm alternator			
	(E) Answer not known			
25.	The no load current drawn by a transformer is usually ———————————————————————————————————			
	(A) 0.2 to 0.5 (B) 2 to 5			
	(C) 12 to 15 (D) 20 to 30			
	(E) Answer not known			
26.	The purpose of providing iron core in a transformer is mainly			
	(A) to provide support to windings			
	(B) to reduce hysterisis loss			
·	(C) to reduce eddy current losses			
V	to decrease the reluctance of magnetic flux path			
•	(E) Answer not known			
27.	In a 1100/200 V transformer, if the resistive and reactive drops are 1 and 5 V respectively, the % regulation when it is working at 0.8 p.f. is			
	(A) 2% (B) 1.9%			
	(C) 1.8% (D) 2.3%			
	(E) Answer not known			
28.	A 25 kVA transformer has a voltage ratio of 3300/400 V. The primary and secondary current will be			
	(A) 4.0 A, 33 A (B) 7.576 A, 62.5 A			
	(C) 5.6 A, 66 A (D) 4.2 A, 58 A			
	(E) Answer not known			

- 29. A 4 pole lap wound d.c. shunt motor has 60 armature slots and each slot contains 20 conductors. If the armature current is 50 A and flux per pole is 23×10^{-3} Wb, determine the gross torque in N-m. Assume armature reaction reduces the flux by 5%
 - (A) 417 Nm

(B) 644 Nm

(C) 208.5 Nm

- (D) 834 Nm
- (E) Answer not known
- 30. A 4 pole dc generator has 378 wave wound conductors in its armature. If the flux per pole is 0.02 Wb, and the generator runs at a speed of 1000 rpm, the induced emf is
 - (A) 2.52 V

(B) 25.2 V

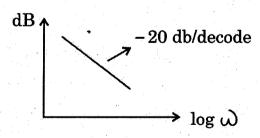
(C) 252 V

- (D) 2520 V
- (E) Answer not known
- 31. Airgap at the pole tips of a DC machine is kept more than that at the centre of mains to reduce
 - (A) reactance voltage
 - (B) effect of armature reaction
 - (C) losses of armature core
 - (D) noise of the machine
 - (E) Answer not known
- 32. A mathematical model of zero-order hold is
 - (A) e^{-sT}

(B) $1 - e^{-sT}$

 $(C) \frac{1-e^{-sT}}{s}$

- (D) $\frac{e^{-sT}}{s}$
- (E) Answer not known


- 33. A good control system has all the following features except
 - good stability (A)
 - slow response
 - (C) good accuracy
 - (D) sufficient power handling capacity
 - Answer not known (E)
- The Roulth array of a characteristic equation is given. The number of 34. roots lying on the right hand side of S-plane is

S^4	9
S^3	8
S^2	-4
S^1	2
S^0	1

0

(B) 1

- (D) 3
- Answer not known
- 35. The given Bode Plot represents the transfer function,

(B) $G(S) = \frac{K}{S+20}$

- (A) $G(S) = \frac{1}{S^2}$ (C) $G(S) = \frac{K}{S(S+5)}$
- (E) Answer not known

- 36. The transfer function of a system is $\frac{3S^2 + 4S + 4}{(S+2)^2 + (S+1)}$. The characteristic equation is,
 - (A) $3S^2 + 4S + 4 = 0$
 - **B**) $(S+2)^2 + (S+1) = 0$
 - (C) $(3S^2 + 4S + 4) + (S + 2)^2 + (S + 1) = 0$
 - (D) $(S+2)^2(S+1)-(3S^2+4S+4)=0$
 - (E) Answer not known
- 37. The transfer function of a system is $T(S) = \frac{K}{S^3(1+ST)}$. The type and order of the system is
 - (A) 2 and 3

(B) 3 and 2

(C) 3 and 3

- \mathcal{B}) 3 and 4
- (E) Answer not known
- 38. The open loop transfer function of a feedback control system is $G(S)H(S) = \frac{1}{(S+1)^3}$. The gain margin of the system is
 - (A) 2

(B) 4

(C) 8

- (D) 16
- (E) Answer not known
- 39. Which of the following effects in the system is NOT caused by negative feedback?
 - (A) Reduction in gain
 - (B) Increase in Bandwidth
 - (C) Increase in distortion
 - (D) Reduction in output impedance
 - (E) Answer not known

- 40. A varying magnetic field linking a coil is given by $\phi = \frac{1}{3}\lambda t^3$, if at time t=3 sec, the emf induced is 9 V, then λ is
 - (A) zero

(B) 1 wb/sec^2

(C) -1 wb/s²

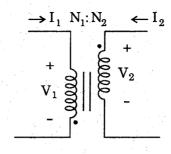
- (D) 9 wb/sec²
- (E) Answer not known
- 41. Which of the following field equation indicate that the free magnetic charges does not exist?
 - (A) $\overline{H} = (1/\mu)(\nabla \times \overline{A})$

(B) $\overline{H} = \int \frac{\overline{I}d\overline{l} \times \overrightarrow{v}}{4\pi R^2}$

(C) $\nabla \cdot \overline{H} = 0$

- (D) $\nabla \times \overline{H} = \overline{J}$
- (E) Answer not known
- 42. Statement A: Magnetic current consists of entirely a displacement component and no conductance component.

Statement B: Magnetic flux lines are always continuous


- Both Statement A, Statement B are correct. Statement B is correct explanation of Statement A
 - (B) Both Statements are correct. But Statement B is not correct explanation of A
 - (C) Statement A is true but B is false
 - (D) Statement A is False, but Statement B is true
 - (E) Answer not known
- 43. The expression $\oint \overline{H} \cdot d\overline{l} = \int_{S} \overline{J} \cdot \overline{d}s$ represents
 - (A) Lenz's Law

(B) Maxwell equation

(C) Ampere's Law

- (D) Faraday's Law
- (E) Answer not known

44. The ideal transformer has $N_2/N_1 = 10$. The ratio V_2/V_1 is

- (A) 10
- (C) -0.1
- (E) Answer not known

- (B) 0.1
- (D) -10
- 45. A coil of 500 turns is linked by a flux of 0.2 mWb. If the flux is reversed in 0.01 s, then the emf induced in the coil is
 - (A) 200 V

(B) 20 V

(C) 2 V

- (D) 0.2 V
- (E) Answer not known
- 46. The total electric flux is given by the expression $\phi_E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2} (4\pi R^2)$.

What can you say about the flux?

- (A) The flux is dependent of the radius R of the sphere
- (B) The flux is independent of the radius R of the sphere
- (C) The flux is inversely proportional to q
- (D) The flux is directly proportional to ε_0
- (E) Answer not known
- 47. Find the potential between points p(1, -1, 0) and q(2, 1, 3) with $E = 40xy\vec{i} + 20x^2\vec{j} + 2\vec{k}$
 - (A) 104

(B) 105

(C) 106

- (D) 107
- (E) Answer not known

- If a vector field Q is solenoidal, which of these is true? 48.
 - $\oint_L Q \cdot dI = 0$

 $\oint_{S} Q \cdot dS = 0$ (D) $\nabla \times Q \neq 0$

 $\nabla \times Q = 0$ (C)

- Answer not known **(E)**
- Given field $A = 3x^2yza_x + x^3za_y + (x^3y 2z)a_z$ it can be said that A is 49.
 - Harmonic (A)

(B) Divergenceless

Solenoidal (C)

- (D) Conservative
- Answer not known **(E)**
- A potential difference V_0 is applied to a mercury column in a cylindrical 50. container. The mercury is now poured into another cylindrical container of half the radius and the same potential difference V_0 applied across the ends. As a result of this change of space, the resistance will be increased
 - (A) 2 times

(B) 4 times

(C) 8 times

- (D) 16 times
- (E) Answer not known
- The energy stored in Electric field is 51.
 - (A) $\frac{1}{2}\varepsilon E$

(B) $\frac{1}{2} \varepsilon E^2$

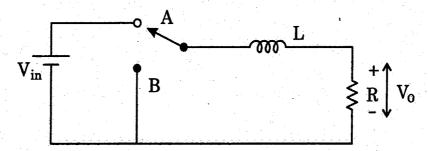
(C) εE^2

- (D) None
- Answer not known (\mathbf{E})
- The number of links required to connect 8 nodes in mesh topology is 52.
 - (A) 8

(C) 7

- (E) Answer not known

- 53. Multiplexing technique that shifts each signal to a different carrier frequency is called
 - A) Frequency Division Multiplexing
 - (B) Time Division Multiplexing
 - (C) Both (A) and (B)
 - (D) Space Division Multiplexing
 - (E) Answer not known
- 54. Which of the following block is not a part of the PCM transmitter?
 - (A) Sampling
 - (B) Quantization
 - (C) Encoder
 - (D) Decoder
 - (E) Answer not known
- 55. In pulse code modulation, when number of quantization levels increase,
 - (A) Noise decreases, cost reduces, BW decreases
 - (B) Noise decreases, cost increases, BW increases
 - (C) Noise increases, cost reduces, BW decreases
 - (D) Noise increases, cost increases, BW increases
 - (E) Answer not known
- 56. If the DFT of a signal $x_1(n)$ is $X_1(K)$ and $x_2(n)$ is $X_2(K)$, then the circular convolution of the signal $x_1(n) * x_2(n)$ is


$$(A) \quad X_1(K) \ X_2(K)$$

- (B) $X_1(K) + X_2(K)$
- (C) $X_1(K) X_2(K)$
- (D) $X_2(K) X_1(K)$
- (E) Answer not known

57.	RAM location 40 H is 10	location 30H is 40 H and the value stored in H. What will be the value in the accumulator tions are executed in 8051?
		OV @R1, A CHD A, @ R0
	(A) 7 F H	(B) 4F H
# 17 m	(C) 40 H	(D) 70 H
	(E) Answer not known	
5 8.	The seventh bit D_7 of co	ntrol register in 8255 is 1. It specifies that,
	$D_6 - D_0$ determines	
	(A) I/O functions in vario	ous modes (B) Input mode
	(C) Output mode	(D) Bit set/Reset mode
	(E) Answer not known	
59.	Match the following:	
	Programmable	USE
	Devices	
	(a) 8253 1.	Programmable Keyboard and Displace Interface
	(b) 8255 2.	Direct Memory Access
	(c) 8257 3.	Programmable Interval Timer/Counter
	(d) 8279 4.	Parallel I/O
	(a) (b) (c) (d)	
	(A) 3 1 2 4	
	(B) 3 4 2 1	
•	(C) 3 2 4 1	
•	(D) 2 3 4 1	
	(E) Answer not known	

A 1 1 1 1 1 1		
60.	To s	save energy during braking
	(A)	Dynamic braking is used
	(B)	Plugging is used
	(C)	Regenerative braking is used
	(D)	Mechanical braking is used
	(E)	Answer not known
61.	SMI	PS is used for
	(A)	obtaining controlled ac power supply
•	(B)	obtaining controlled dc power supply
	(C)	storage of dc power
	(D)	storage of ac power
	(E)	Answer not known
62.	Stat	ement A: A line-commutated inverter changes DC voltage in AC voltage
	Stat	ement B: A single phase half bridge inverter uses two tyristors
	(A)	Statements A and B are true. B explains A
~	(B)	Statements A and B are true. B is not explanation for A
•	(C)	Statement A is true. Statement B is false
	(D)	Statement A is false and B is true
	(E)	Answer not known
63.	Ifa	three phase bridge inverter, each step consist of
	(A)	30° (B) 60°
	(C)	90° (D) will depend on firing angle
1	(E)	Answer not known
	(-)	

- 64. In a single phase half controlled converter, for continuous conduction, free wheeling diode conducts for
 - (A) $\pi \alpha$
 - (B) π
 - (C) α
 - (D) $\pi + \alpha$
 - (E) Answer not known
- 65. A step down dc.dc chopper has a resistive load of R:15 Ohm and input voltage V_s :200V. When the chopper remains ON, its voltage drop is 2.0 V. The chopper frequency is 1 kHz. If the duty cycle is 50%, then the average output voltage is
 - (A) 100 V
 - (B) 101 V
 - (C) 99 V
 - (D) 98 V
 - (E) Answer not known
- 66. The circuit shown is a

- A) Step down chopper
 - (B) Half wave rectifier
 - (C) Step up chopper
 - (D) Full wave rectifier
 - (E) Answer not known

67. Match the List I (Power Electronic Converter) with List II (Applications) and choose the correct answer from the codes mentioned below:

List I (Power Electronic Converter)

(a) Phase Controlled AC-DC 1. High frequency

converters

- (b) AC voltage controller
- (c) Cycle converter
- (d) Inverter
 - (a) (b) (c) (d)
- (A) 4 3 2 1
 - (B) 4 3 1 2
 - (C) 3 4 2 1
 - (D) 3 4 1 2
 - (E) Answer not known

List II (Applications)

- High frequency induction heating
- 2. High power low speed AC Drive
- 3. Ceiling Fan Regulator
- 4. Battery charge controller

68.	Which of the following is used in	SCR to protect from high dv/dt?
~	(A) Srubber circuit	
	(B) Fuse	
	(C) Equalizing circuit	
	(D) Circuit breaker	
	(E) Answer not known	
69.	correct answer using the codes a) with List II (Devices) and select the given below the lists: List II (Devices)
	List I (Parameters) (a) Pinchoff voltage	1. Power diode
	(b) Latching current	2. Power MOSFET
•	(c) Softness factor	3. Power BJT
•	(d) Soft and hard saturation	4. SCR
	(a) (b) (c) (d)	
	(A) 2 4 3 1	
	(B) 1 3 4 2	
	(C) 1 3 2 4	

(E) Answer not known

1

- 70. Consider the following statements. Which of the following are correct?
 - (1) Positive sequence currents are present in all types of faults.
 - (2) Negative sequence currents are present in all unsymmetrical faults.
 - (3) Zero sequence currents are present when neutral of the system is grounded and the fault involves the ground.
 - (A) 1 and 2 only
 - (B) 1 and 3 only
 - (C) 2 and 3 only
 - (D) 1, 2 and 3 only
 - (E) Answer not known
- 71. A circuit breaker is essentially
 - (A) an arc extinguisher
 - (B) a current interrupting device
 - (C). a power factor correcting device
 - (D) a device to neutralise the transient effects
 - (E) Answer not known

72. Match the List I (improvements in transmission system) with List II (effects due to improvements) and select the correct answer using the codes given below the lists:

1.

3.

List I (improvements)

List II (effects)

Increase string efficiency

- (a) Increasing the spacing between conductors
- (b) Increased flashover voltage
- 2. Reduces tension in the overhead line

Corona reduces

- (c) Increasing sag in overhead line
- (d) Usage of gaurd ring
- 4. Safety factor of insulator increases
- (a) (b) (c) (d)
- (A) 2 4 1 3
- (B) 4 1 2 3
- (C) 3 4 2 1
 - (D) 4 2 3 1
 - (E) Answer not known

73. The string efficiency of a high voltage line is around

(A) 100%

(B) 80%

(C) 40%

- (D) 10%
- (E) Answer not known

74.	. For a 400 kV line, the numbers of discs in an insulator string is around			
	(A)	37	(B) 31	
. •	JE)	25	(D) 16	
	(E)	Answer not known		
75 .	Lar	ge size steam plants and nucl	ear plants are suitable for	
	(A)	Peak loads		
	(B)	Intermediate loads		
•	(6)	Base loads		
	(D)	Both base and peak loads		
	(E)	Answer not known		
	•			
76.			pedance Z_{pu} new if the base MVA and	
			per unit impedance Z _{pu} old is 0.1 on its	
		base values.		
	(A)	0.8	(B) 0.2	
•	(C)	0.05	(D) 0.01	
	(E)	Answer not known		
77.	T ooo	tion of a groups toul in a bad		
	Loca		ro electric power system is near	
•	(A)	Turbine		
	(B)	Tailrace		
	(C)	Reservoir		
	(D)	Dam		
	(E)	Answer not known		

- 78. Identify the element, which is not a part of a data acquisition system.
 - (A) Digital to Analog converter
 - (B) Filter
 - (C) Display
 - (D) Timer
 - (E) Answer not known
- - (A) /4 bit

(B) 8 bit

(C) 10 bit

- (D) 0 bit
- (E) Answer not known
- 80. A current carrying conductor is shown below in Fig. (a), If it is brought in a magnetic field in Fig. (b).

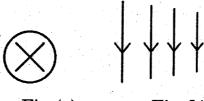


Fig (a)

Fig (b)

- (A) it will experience a force from left to right
- it will experience a force from right to left
 - (C) it will experience a force from top to bottom
 - (D) it will experience no force
 - (E) Answer not known

81.	The	variable-inductance type electrical transducer is
~	(A)	LVDT
	(B)	Strain gauge
	(C)	Capacitive transducer
	(D)	Photovoltaic cell
	(E)	Answer not known
82.	The	nominal ratio of a current transformer is
	(A)	Primary winding current/Secondary winding current
	(B)	Rated primary winding current/Rated Secondary winding current
	(C)	Number of Secondary winding turns/Number of primary winding
•		turns
	(D)	(PrimaryWinding Current) ²
		√Secondary Winding Current
	(E)	Answer not known
83.	An o	electrodynamometer type of instrument finds its major use as
	(A)	standard instrument only
	(B)	both as standard and transfer instrument
	(C)	transfer instrument only
	(D)	indicator type instrument
	(E)	Answer not known
84.	For	a certain load, one of the wattmeter reads 20 kW and the other 5 kV or the voltage circuit of this wattmeter has been reversed. The power
		or of the load is
	(A)	0.1273 leading (B) 0.3273 leading
	(e)	0.3273 lagging (D) 0.1273 lagging
	(E)	Answer not known
* * * * * * * * * * * * * * * * * * *		

- 85. A Maxwell's bridge is used to measure an inductive impedance. The bridge constants at balance are $C_1=0.01~\mu\mathrm{F},~R_1=470~\mathrm{k}\Omega,~R_2=5.1~\mathrm{k}\Omega,$ and $R_3=100~\mathrm{k}\Omega.$ Find the series equivalent of the unknown impedance.
 - (A) $R_X = 1.09 \text{ k}\Omega$, $C_X = 0.01 \mu\text{F}$
 - $R_X = 1.09 \text{ k}\Omega, L_X = 5.1 \text{ H}$
 - (C) $L_X = 5.1 \text{ H}, C_X = 0.01 \ \mu\text{F}$
 - (D) $L_X = 5.1 \text{ H}, R_X = 0.109 \text{ k}\Omega$
 - (E) Answer not known
- 86. The power consumption of PMMC instrument is typically about
 - (A) 0.25 W to 2 W
 - (B) 0.25 mW to 2 mW
 - $25 \mu \text{W} \text{ to } 200 \mu \text{W}$
 - (D) $0.25 \mu W \text{ to } 2 \mu W$
 - (E) Answer not known
- 87. The damping force acts on the moving system of an indicating instrument only when it is
 - (A) moving
 - (B) stationary
 - (C) near its full deflection
 - (D) just starting to move
 - (E) Answer not known

88. In a delta connected three phase system, the relation between the line and the phase values of voltage and current are

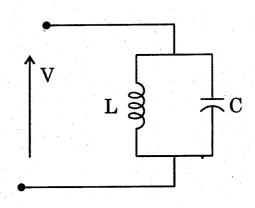
$$V_L = V_{ph}$$
, $I_L = \sqrt{3} I_{ph}$

(B)
$$V_L = \sqrt{3} \ V_{ph}, \ I_L = I_{ph}$$

(C)
$$V_L = \frac{V_{ph}}{\sqrt{3}}, I_L = I_{ph}$$

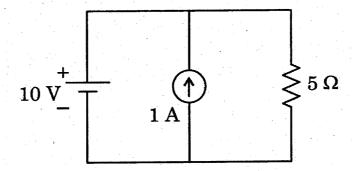
(D)
$$V_L = V_{ph}, \ I_L = \frac{I_{ph}}{\sqrt{3}}$$

- (E) Answer not known
- 89.. The sum of the Instantaneous voltages around a delta connected supply is equal to
 - (A) the maximum line voltage
 - (B) twice the maximum line voltage
 - (C) $\sqrt{2}$ times the rms value of the phase voltage
 - (1) zero
 - (E) Answer not known
- 90. Condition for reciprocity of two port networks is
 - $(A) \quad A = D$

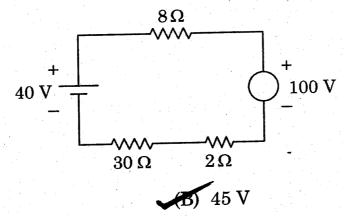

(b)
$$AD - BC = 1$$

(C)
$$AD + BC = 1$$

- (D) $\Delta h = 1$
- (E) Answer not known


91.	In a	n RLC parallel circuit —	and	—— are minimum at
	resor	nance.		
	(A)	current, admittance		
	(B)	voltage, resistance		
	(C)	voltage, impedance	and the second s	
	(D)	current, impedance		
	(E)	Answer not known		
92.	In a	series RLC circuit, if C	is increased, what	happens to resonant
	frequ	iency?		
	(A)	It increases		
. 17	(B)	It remains the same		
		It decreases		
	(D)	It becomes zero		
	(E)	Answer not known		
93.	A pa	rallel RLC circuit has L =	2H and C = 0.25	F. The value of R that
	· . –	produce unity damping fac		
	(A)	0.5Ω		
	(B)	1Ω		
	(B)	2Ω		
1	(D)	4Ω		
	(E)	Answer not known		
	(11)	THIS WOT HOU INTO WIT		

94. For the tank circuit shown below, find the circulating current at resonance, for a supply voltage of V volts (a.c.). Neglect any resistance of the circuit.


(A) $\left[\frac{VL}{C}\right]^{1/2}$ $V \left[\frac{C}{L}\right]^{1/2}$

- (B) $V\left[\frac{L}{C}\right]^{1/2}$
- (D) $\left\lceil \frac{VC}{L} \right\rceil^{1/2}$
- (E) Answer not known
- 95. In the circuit shown below, find the current through the 5Ω resistor

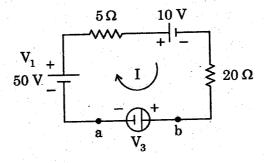
- (A) 1A (B) 2A
 - (C) 10A
 - (D) 20A
 - (E) Answer not known

96. The voltage across 30Ω in the circuit shown is

- (A) 30 V
- (C) 18 V

- (D) 24 V
- (E) Answer not known

97. The Thevenin impedance of a network seen from the load terminals is $(80 + j55)\Omega$. For maximum power transfer, the load impedance must be


(A) $(-80 + j55)\Omega$

(B) $(-80 - j55)\Omega$

(80 – j55) Ω

- (D) $(80 + j55)\Omega$
- (E) Answer not known

98. Find V₃, if the current I in the circuit shown in the figure is 0.40 A

(A) 10 V

(B) 15 V

(C) 20 V

- 30 V
- (E) Answer not known

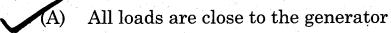
99. The simplest method of hydrogen production is (A) Biophotosynthesis Electrolysis of water (C) Steam reforming of Methane (D) Thermolysis of water **(E)** Answer not known 100. As load is increased on an open circuited a fuel cell (A) Its efficiency increases (B) Its output voltage remains unchanged **(C)** Its output voltage decreases Its output voltage increases (D) **(E)** Answer not known 101. As compared to a lead-acid cell, the efficiency of a nickel-iron cell is less due to its Compactness (A) **(B)** Higher Internal Resistance (C) Lower e.m.f. (D) Smaller quantity of electrolytes used (E) Answer not known 102. Which of the following statements is not true about battery storage? (A) It is a modular and portable source of energy The cost of battery storage is high It has prolonged life It has the ability of rapid switchover between charging and (D)

(E)

discharging operations

Answer not known

LUO.	Dari	tiells totol is associated with	•		
	(A)	Tidal energy	(B)	Nuclear energy	
	(C)	Vertical axis wind turbine	(D)	Horizontal axis wind turbine	
. •	(E)	Answer not known			
104.	If the speed of a wind stream remains unchanged while passing through				
	the rotor,				
	(A)	a large power will be generat	ed		
	(B)	the flow is known as stalled	low		
	(C) the speed of the rotor will be very high				
	(D)	zero power will be generated			
	(E)	Answer not known			
105.	Indu	Induction generator used in wind mills			
	(A)	cannot work in isolation			
	(B)	can work in isolation			
	(C)	should work in parallel with	synch	ronous generators	
	(D)	should work without synchro	nous	generators	
	(E)	Answer not known			
106.	. An Induction Generator Controller (IGC) controls				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(A)	Only the voltage and not the	frequ	iency	
	(B)	Only the frequency and not t	he vo	ltage	
	10)	Both the voltage and frequen	cy		


The power input to the generator

Answer not known

(D)

(E)

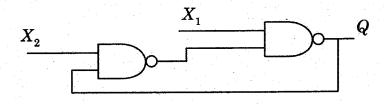
107. For small schemes (less than 2 kW), (12-24V) dc generation is desirable where

- (B) All loads are far away from the generator
- (C) Only lamp loads are used
- (D) Only dynamic loads are used
- (E) Answer not known

108. A cylindrical parabolic concentrator requires

(A) no tracking

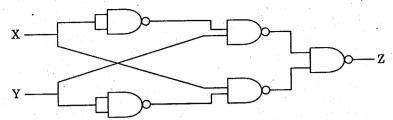
(B) one axis tracking


(C) two axis tracking

- (D) seasonal adjustment
- (E) Answer not known

109. Global warming is mainly caused due to

- (A) Air Pollution
- (B) Emission of heat from engines
- (C) Emission of CO₂ due to burning of fossil fuels
 - (D) Use of Nuclear Energy
 - (E) Answer not known


110. In the figure $X_1 = 1$, $X_2 = 1$, the output Q remains

(A) at 1

- (B) at 0
- (C) at its initial value
- (b) unstable
- (E) Answer not known

111. The logic circuit shown in figure realizes the function

XOR

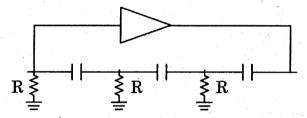
(B) XNOR

(C) Half adder

- (D) Full adder
- Answer not known **(E)**

112. Direct couple amplifier is used to amplify

- frequency below 100 Hz (A)
- frequency below 10 Hz **(B)**
 - frequency above 10 kHz (C)
 - frequency above 20 kHz (D)
 - Answer not known **(E)**


113. Another name of voltage to frequency converter is

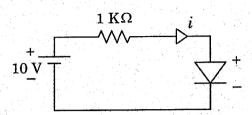
- Astable Multivibrator (A)
- Monostable Multivibrator **(B)**
- Phase lock loop (C)
- Voltage controlled oscillator
 - Answer not known **(E)**

114. The ideal Op-Amp has the following characteristics

- $R_i=0,\,R_o=0,\,BW=0$ (B) $R_i=\infty,\,R_o=0,\,BW=\infty$ (A)
- (C) $R_i = 0, R_o = \infty, BW = \infty$ (D) $R_i = \infty, R_o = \infty, BW = \infty$
- (E) Answer not known

- 115. What happens when emitter bypass capacitor gets open circuited in CE amplifier?
 - (A) No change in the output voltage
 - (B) AC base voltage decreases
- (C) AC base voltage increases
 - (D) AC base voltage become zero
 - (E) Answer not known
- 116. The frequency of oscillation of the oscillator circuit shown in figure

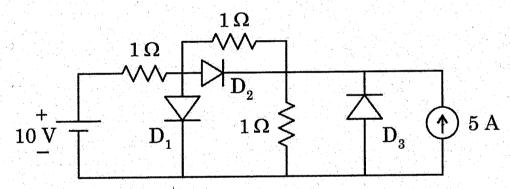
- $(A) \quad \frac{1}{2\pi\sqrt{6}\,\mathrm{RC}}$
 - (B) $\frac{1}{2\pi RC}$
 - (C) $\frac{1}{\sqrt{6}RC}$
 - (D) $\frac{\sqrt{6}}{2\pi RC}$
 - (E) Answer not known
- 117. A centre tap full-wave rectifier supplies a load of $1\,\mathrm{k}\Omega$. The ac voltage across the secondary is 200-0-200 V (rms). If the diode resistance is neglected, the d.c. load current is
 - (A) 18 A


(B) 0.18 A

(C) 0.9 A

- (D) 9 A
- (E) Answer not known

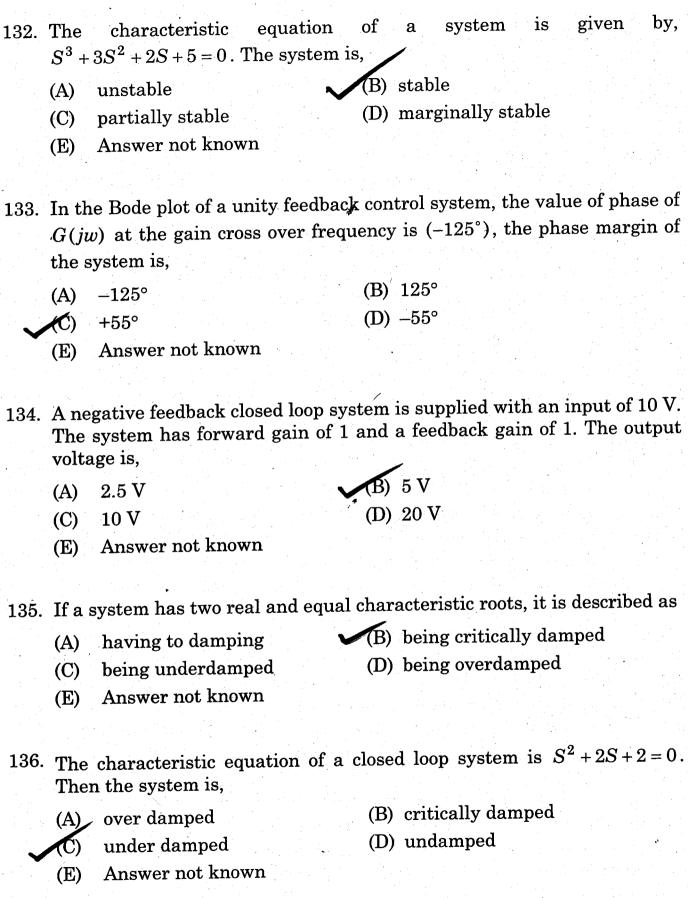
118. The V-I characteristics of the diode circuit is given below:


$$i = \begin{cases} \frac{V - 0.7}{500} A, V \ge 0.7V \\ 0A, V < 0.7V \end{cases}$$

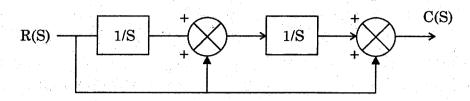
The current in the circuit is

- (A) 10 mA
- (C) 6.67 mA
- (E) Answer not known

- (B) 9.3 mA
- (D) 6.2 mA
- 119. What are the states of the three ideal diodes of the circuit shown figure?


- (A)
- D₁ ON, D₂ OFF, D₃ OFF
- (B) D₁ OFF, D₂ ON, D₃ OFF
- (C) D₁ ON, D₂ OFF, D₃ ON
- (D) D₁ OFF, D₂ ON, D₃ ON
- (E) Answer not known
- 120. The power factor correction capability of a loaded synchronous motor
 ————— with the increase in mechanical load.
 - (A)
- decreases

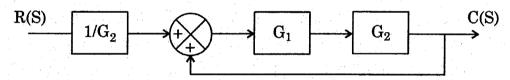
- (B) increases
- (C) remains unchanged
- (D) none of the above
- (E) Answer not known


121.	The main reason for using a hysteresis motor for high quality tape recorders is that						
	(A)	its speed is constant					
~	(B)	it develops extremely and st load	eady torque able to synchronous any				
	(C)	it requires no centrifugal swi	tch				
	(D)	it is unaffected by mechanica	l vibration				
	(E)	Answer not known					
122.		synchronous speed of a 3 phasing at 970 rpm when connecte	se induction motor having 6 poles and do a 50 Hz supply is				
	(A)	1500 rpm	(B) 1000 rpm				
	(C)	1200 rpm	(D) 3000 rpm				
	(E)	Answer not known					
123.	The power factor of a squirrel cage induction motor is						
V	(A)	low at light loads	(B) low at heavy loads				
$\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} $	(C)	low at light and heavy loads	(D) low at rated load only				
	(E)	Answer not known					
124.	The starting current of an induction motor is five times the full load current while the full load slip is 4%. The ratio of starting torque to ful load torque is						
	(A)	0.6	(B) 0.8				
	(C)	1.0	(D) 1.2				
	(E)	Answer not known					

- 125. In a small transformer the primary and secondary windings are of thin wires. In a short circuit test, the frequency is increased to 100 Hz from 50 Hz
 - (A) the copper losses will increase by four times
 - (B) the copper loss will reduce to one fourth
 - (C) the copper loss will remain the same
 - (D) the copper loss will be doubled
 - (E) Answer not known
- 126. The DC generator that has poorest voltage regulation is
 - (A) Shunt generator
 - Series generator
 - (C) Flat-compounded generator
 - (D) Over-compounded generator
 - (E) Answer not known
- 127. A 10 kW, 250 V dc, 6 pole shunt generator runs at 1000 rpm. When delivering full load. The armature has 534 lap connected conductors. Full load Cv loss is 0.64 kW. The total brush drop is 1 Volt. Determine the flux per pole. Neglect shunt current.
 - (A) 30 mWb
 - (B) 90 mWb
 - (C) 0.3 mWb
 - (D) 0.9 mWb
 - (E) Answer not known

128.	If there is a contact error in the output signals, derivative control will							
	(A)	reduce the error to zero						
	(B)	reduce the error but not secu	larly	to zero				
	(C)	loss to effect on the error						
	(D)	increase the error						
	(E)	Answer not known						
129.	A lea	ad compensator in a control sys	stem					
	(A)	stability of the system	pons	se and increases the margin of				
	(B)	slows down the transient re stability of the system	spon	se and increases the margin of				
	(C)	speeds up the transient response and decreases the margin of stability of the system						
	(D)	slows down the transient response and decreases the margin of stability of the system						
	(E)	Answer not known						
130.	The	gain margin for a stable systen	1					
~	(A)	has a positive decibel value	(B)	has a negative decibel value				
	(C)	has zero decibel value	(D)	has an imaginary decibel value				
	(E)	Answer not known		하는 경기에 가는 사람이 별 수 있다. 1 : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1]				
101								
131.	In Bo	ode plot the factor $\frac{1}{jw}$ in the	trans	sfer function gives a line having				
	slope							
	(A)	–20 dB per octane	(B)	–10 dB per octane				
1	(0)	-6 dB per octane		–2 dB per octane				
	(E)	Answer not known						
				the control of the co				

137. For the block diagram shown, the transfer function $\frac{C(S)}{R(S)}$ equals



 $(A) \quad \frac{S^2+1}{S^2}$

(B) $\frac{S^2 + S + 1}{S^2}$

(C) $\frac{S^2 + S + 1}{S^3}$

- (D) $\frac{1}{S^2 + S + 1}$
- (E) Answer not known
- 138. The transfer function of the given block diagram is,

- (A) $\frac{C(S)}{R(S)} = \frac{G_1}{1 + G_1 G_2}$
- (B) $\frac{C(S)}{R(S)} = \frac{G_1}{1 G_1 G_2}$
- (C) $\frac{C(S)}{R(S)} = \frac{G_2}{1 G_1 G_2}$

- (D) $\frac{C(S)}{R(S)} = \frac{G_2}{1 + G_1 G_2}$
- (E) Answer not known
- 139. The characteristic polynomial and the poles of a system with the transfer function, $G(S) = \frac{4(S+2)}{(S+3)(S+4)}$ is
 - (A) 4S+8 and -3 and -4
 - (B) $S^2 + 7S + 12 = 0$ and -2, -3 and -4
 - (C) 4S + 8 and -2
 - (D) $S^2 + 7S + 12 = 0$ and -3 and -4
 - (E) Answer not known

- 140. An emf will be induced in a conductor if
 - (A) it is perpendicular to the magnetic field
 - (B) it is parallel to the magnetic flux
 - (C) it lies in any direction to the flux
 - (D) it is moving at right angle to the flux
 - (E) Answer not known
- 141. The Lorentz force in vector notation is

$$(\overline{I} \times \overline{B})L$$

- (B) $\left(I^2 \cdot B^2\right) L$
- (C) $\sqrt{\overline{I}/\overline{B}} \cdot L$
- (D) $\frac{L}{\sqrt{I/B}}$
- (E) Answer not known
- 142. A circuit has 1000 turns enclosing a magnetic circuit 20 cm² in section. With 4A, the flux density is 1.0 Wb/m² and with 9 A, it is 1.4 Wb/m². The mean value of the inductance between these current limits is
 - (A) 1600 H

(B) 160 H

(C) 16 H

- (D) 0.16 H
- (E) Answer not known
- 143. The coefficient of coupling for two coils having $L_1 = 2H$, $L_2 = 8H$, M = 3H is
 - (A) 0.1875

(B) 0.75

(C) 1.333

- (D) 5.333
- (E) Answer not known

144. Statement A	: The current in a constant inductive system does not change instantaneously.
Statement E	: In constant inductive system the flux linkage is conserved initially

- (A) Statements A and B are true Statement B is correct explanation for A
- (B) Statements A and B are true but B is not correct explanation for A
- Statement A is true and B is false
- (D) Statement A is false and B is true
- (E) Answer not known

145. $\nabla \cdot (\nabla \times A)$ is equal to

(A) 1

(B) -1

(C) 0

- (D) ∞
- (E) Answer not known
- 146. A wedge is described by $z = 0.30^{\circ} < \phi < 60^{\circ}$. Which of the following is incorrect?
 - (A) The wedge lies in the x y plane
 - B) It is infinitely long
 - (C) On the wedge, $0 < \rho < \alpha$
 - (D) A unit normal to the wedge is $\pm a_z$
 - (E) Answer not known
- 147. A potential field is given by $V = 3x^2y yz$. Which of the following is <u>not</u> true?
 - (A) At point (1, 0, -1), V and E vanish
 - (B) $x^2y = 1$ is an equipotential line on the xy plane
 - (C) The equipotential surface V = -8 passes through point P(2, -1, 4)
 - (D) The electric field a + P is $12a_x 8a_y a_z \text{V/m}$
 - (E) Answer not known

148.	The	synchronisation points location is decided by
	(A)	Physical layer (B) Transport layer
. ~	X	Session layer (D) Presentation layer
	(E)	Answer not known
149.	A ty	pical example for a TDM system is ————
	(A)	Multiplexing of Address and Data lines in a microprocessor
	(B)	A local telephone system
	(C)	Broad cast Radio
	(D)	Broadcast TV
	(E)	Answer not known
150.	In m	esh topology, the relationship between one device and another is
	(A)	Primary to peer
V	(B)	Peer to Peer
	(C)	Peer to primary
	(D)	Primary to secondary
	(E)	Answer not known
151.	In ci	rcuit switching, the path
•	(A)	to be followed depends on length of message
	(B)	upto next intermediate node is allocated before transmission of message begins
~	(C)	upto destination is allocated before transmission of message begins
*.	(D)	Both (A) and (B)
	(E)	Answer not known

152.	The	biggest disadvantages of	PCM is					
	(A)	inability to handle anal	og signals					
	(B)							
	(C)	incompatibility with TI	DM					
V	(D)	(D) the requirement of larger bandwidth						
	(E)	Answer not known						
153.	Com	panding is used						
	(A)	to overcome quantization	on noise in PCM					
	(B)	in PCM transmission, t	o allow amplitude limiting in the receiver					
	(C)	to protect small signals	in PCM from quantizing distortion					
	(D)	to overcome impulse no	ise					
	(E)	Answer not known						
154.	Quantizing noise occurs in							
	(A)	TDM	(B) FDM					
	(0)	PCM	(D) PWM					
	(E)	Answer not known						
155.	The	The device select signals, \overline{CS} , A_1 , A_0 are 0, 1, 0 respectively. Th						
		cted I/O port is						
	(A)	Port A	(B) Port B					
	(0)	Port C	(D) 8255A is not selected					
	(E)	Answer not known						
156.	Num	nber of ports used in an e	xpanded mode in 8051 are,					
	(A)	one	(B) two					
	(C)	three	(D) four					
	(E)	Answer not known						

157.		ch the following statement	•	icroprocessor?
	(i)	CMP and SUB instruction	ns are same	
	(ii)	INR instruction does not	affect the carry flag	
	(iii)	XRA A instruction clear except Parity flag	rs the accumulator	and resets all flags
	(A)	(i) only	(B) (i) and (ii)	
V	(0)	(ii) and (iii)	(D) (iii) only	
•	(E)	Answer not known		
158.		ch the following		
		e of Instruction	Instruction	
		One byte Instruction 1.		
		2 byte Instruction 2.		
	(c)	3 byte Instruction 3.	ADD B	
	· · · · · · · · · · · · · · · · · · ·	(a) (b) (c)		
	(A)	1 2 3		
	(B)	3 2 1		
	(C)	2 1 3		
	(D)	3 1 2		
	(E) A	Answer not known		
159.		pin 8086 indicate e 8086 microprocessor syst		thmetic co-processor
,	(A)	READY	(B) $\overline{\mathrm{DEN}}$	
	(C)	BHE	(D) TEST	
	(E)	Answer not known		
160.	State	or voltage control for speed	control of induction	motor is suitable for
	(A)	fan and pump drives	(B) drive of a cr	ane
	(C)	running it as a generator	(D) constant loa	d drive
	(E)	Answer not known		
				and the second of the second o

	(A)	Only even harmonics	
	(B)	Both odd and even harmonic	${f s}$
	(C)	Only odd harmonics	
	<u>(</u> D)	Only triplen harmonics	
	(E)	Answer not known	
162.	Con (VS		pertaining to Voltage Source Inverter
	(i)	Voltage Source Inverter has terminals	stiff d.c. voltage source at its input
	(ii)	Voltage Source inverter, is one negligible impedance.	e in which the d.c. source has small or
	(iii)) Voltage Source Inverters are r	not suitable for multimotor drives
	(iv)	In Voltage Source Inverters, causes current to raise very fa	a short circuit occurs its terminals st.
		All of these statements	
L	(A)	(i), (ii) and (iv) are correct	
	(B)	(ii) and (iii) are correct	
	(C)		
	(D)	(iii) and (iv) are correct	
	(E)	Answer not known	
163.		ingle phase voltage source squad. The wave form of load curren	are wave inverter feeds pure inductive t will be
	(A)	Sinusoidal	(B) Rectangular
	(C)	Trapezoidal	D) Triangular

161. The output voltage waveform of a 3φ square wave inverter contains

(E) Answer not known

164. Match the List I (Converter topology) with List II (Ripple frequency) and choose the correct answer:

List I (Converter topology)

List II (Ripple frequency)

(a) Three phase half controlled converter

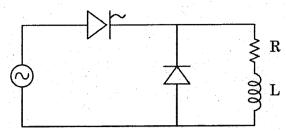
1. $2f_S$

(b) Single phase half wave controlled converter

2. 6 f_S

(c) Three phase fully controlled converter

3. $3f_S$


(d) Single phase fully controlled converter

4. f_S

- (a) (b) (c) (d)
- (A) 1 2 4 3
- (B) 3 2 4 1
- (C) 3 4 2 1
 - (D) 3 2 1 4
 - (E) Answer not known

165	The	cooling time constant of a motor is usually
100.		
	(A)	Less than heating time constant
	(B)	Equal to heating time constant Many there heating time constant
	(D)	More than heating time constant
	(D)	Proportional to load
	(E)	Answer not known
166.	The	voltage blocking capability of IGBT is determined by
	(A)	injection layer
	(B)	body layer
	(C)	metal used for contacts
		drift layer
	(E)	Answer not known
	(11)	Allswer Hot Kilowii
167.	The c	circuit turn – off time of an SCR is defined as the time
	(A)	Taken by the SCR to turn off
	(B)	Require for the SCR current to become Zero
	(C)	For which SCR is reverse biased by the commutative circuit
	(D)	For reducing current below holding current
	(E)	Answer not known
168.	The l	atching current of SCR is 20 mA. Its holding current will be
	(A)	23 mA
	(B)	40 mA
V	(0)	10 mA
	(D)	60 mA
	(E)	Answer not known

169. Choose the correct statement with respect to the below given circuit

- The load voltage can never be negative
 - (B) The load voltage can never be positive
 - (C) The load voltage can never be zero
 - (D) The load current can be negative
 - (E) Answer not known

170. The pressure of SF₆ gas in circuit breaker is around

- (A) 0.25 kg/cm^2
- (B) 1 kg/cm²
- (C) 4 kg/cm²
 - (D) 40 kg/cm²
 - (E) Answer not known

171. For a single line to ground fault, on phase a, the terminal conditions are

(A)
$$Va = 0$$
; $Ib = Ic = 0$

- (B) Vb = 0; Ia = Ic = 0
- (C) Vc = 0; Ia = Ic = 0
- (D) Va = 0; Vb = 0; Ic = 0
- (E) Answer not known

172.	If the fault current is	2000 A,	the	relay	setting	g is	50%	and	CT	ratio	is
	400/5, the plug setting										

- (A) 25
- (B) 15
- (C) 50
- (D) 10
 - (E) Answer not known

173. Consider the following statements related to the function of a booster in distribution network

- (1) Booster is a series dc generator connected in series with the feeder.
- (2) Booster is a series dc generator connected in parallel to the feeder.
- (3) Feeders can be regulated independently

Which of the following are correct?

- (A) 1 and 2
- (B) 2 and 3
- (C) 1 and 3
 - (D) 1 only
 - (E) Answer not known

174. If capacitance between two conductors of a 3 phase line is $4 \mu F$, then capacitance of each conductor to neutral is

- (A) $4 \mu F$
- (B) 8 μF
 - (C) $12 \mu F$
 - (D) $0.25 \,\mu F$
 - (E) Answer not known

	main drawback(s) of underground system over overhead system in smission and distribution of power is/are
(A)	exposure to lightning
(B)	heavy initial cost
(C)	exposure to smoke, ice, wind
(D)	interference between power and communication lines
(E)	Answer not known
Pin t	type insulators are generally not used for voltages exceeding
	66 kV
(D)	33 kV
	25 kV 11 kV
	Answer not known
(E)	Allswer not known
In a	transmission system the feeder supplies power to
	transformer substantions (step-up)
	service mains
10)	distributors
(D)	feeders
	Answer not known
	ne voltage magnitude V and phase angle 8 are specified for the bus, ous is classified as
(A).	Slack bus
(B)	Generator bus
	Load bus
	Feeder
(E)	Answer not known
	(A) (B) (C) (D) (E) Pin (A) (B) (C) (D) (E) In a (A) (B) (C) (D) (E) If, the h (A) (B) (C) (D) (E)

117		
179.	The	number of units generated will be more, if the ———————————————————————————————————
	(A)	Cost factor
	(B)	Demand factor
	(C)	Depreciation factor
•	(B)	Load factor
	(E)	Answer not known
180.	fixed	which of the following power system economic calculation methods, a depreciation charge is made every year and interest compounded annually?
	(A)	Diminishing value method
	(B)	Linear value method
	(0)	Sinking fund method
	(D)	Straight line method
	(E)	Answer not known
181.	is bu	eam power station has an overall efficiency of 20% and 0.5 kg of coal rnt per kWh of electrical energy generated. If the heat equivalent of 7h is 860 KCal how much will be the calorific value of fuel.
	(A)	860 KCal/kg
	(B)	86 KCal/kg
	se)	8600 KCal/kg
	(D)	344 KCal/kg
	(E)	Answer not known .
182.	Digit	al to analog converter can be considered as a
V	(A)	decoding device (B) encoding device
	(C)	multiplexer (D) summing amplifier
	(E)	Answer not known

- 183. There are 100 turns in the moving coil of the moving coil instrument and the coil is wound on a 3 cm side square former. If the flux density in the air gap is 0.06 Wb/m² and it carries a current of 12 mA, the deflecting torque on the coil is
 - (A) $21.6 \times 10^{-6} \text{ N-m}$
 - (B) $64.8 \times 10^{-6} \text{ N-m}$
 - (C) $32.4 \times 10^{-6} \text{ N-m}$
 - (D) $42.3 \times 10^{-6} \text{ N-m}$
 - (E) Answer not known
- 184. Thermocouples works on
 - (A) induction effect
 - (B) seebeck effect
 - (C) piezo-electric effect
 - (D) magnetostrictive effect
 - (E) Answer not known
- 185. Dummy strain gauges are used for
 - (A) compensation of temperature changes
 - (B) increases of the sensitivity of bridge in which they are included
 - (C) compensating for different expansion
 - (D) calibration of strain gauges
 - (E) Answer not known
- 186. The transducer that converts measurand into the form of pulse is a _____ transducer.

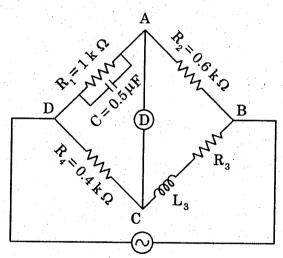
(A) digital

(B) active

(C) analog

(D) pulse

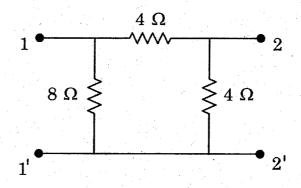
(E) Answer not known


187. In spring-controlled moving Iron instrument, the scale is

- (A) Uniform
- (B) Cramped at lower end and expanded at the upper end
 - (C) Expanded at lower end and Cramped at upper end
 - (D) Cramped both at lower and at the upper end
 - (E) Answer not known

188. A dual beam CRO uses

- (A) Electronic Switch
- Two sets of VDPs and single set of HDPs
 - (C) One electron gun
 - (D) Two time base generator circuits
 - (E) Answer not known


189. The bridge shown in fig. is balanced. The value of R₃ and L₃ will be

- (A) $120 \Omega, 0.12 H$
- (B) $240 \Omega, 0.12 H$
 - (C) $280 \Omega, 0.129 H$
 - (D) $120 \Omega, 0.24 H$
 - (E) Answer not known

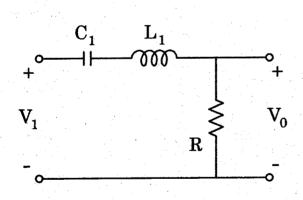
190. To measure precise inductance from a few μH to several henries, bridge is used. Maxwell's (A) Hay (B) Maxwell-Wein (C) Anderson Answer not known (E) 191. The material of wires used for making resistance standards is usually Manganin **Nichrome (B)** Copper (C) Phosphor bronze (D) Answer not known (E) 192. If $v_1 = 30 \sin(wt + 10^\circ)V$ and $v_2 = 20 \sin(wt + 50^\circ)V$, which of these statements are true? v_1 leads v_2 (A) v_2 leads v_1 **(B)** v_1 and v_2 are in phase with each other (C) v_1 and v_2 are exactly out of phase with each other (D) Answer not known **(E)**

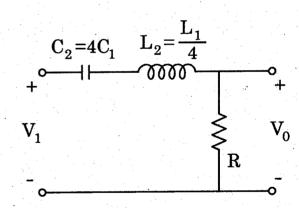
193. The input and output impedance of the two port network shown in the figure respectively

(A) 4Ω , 3Ω

(B) 4Ω , 2Ω

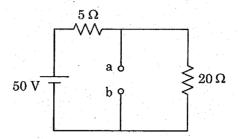
(C) 3Ω , 2Ω

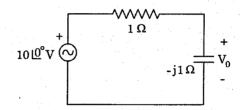

- (D) 2Ω , 1Ω
- (E) Answer not known
- 194. The h-parameters h_{11} and h_{21} are obtained
 - by shorting output terminals
 - (B) by opening input terminals
 - (C) by shorting input terminals
 - (D) by opening output terminals
 - (E) Answer not known
- 195. The current in a 2H inductor varies at a rate of 2 A/S. Find the energy stored in the magnetic field after 2S.
 - (A) 4J


(B) 32J

16J

- (D) 8J
- (E) Answer not known

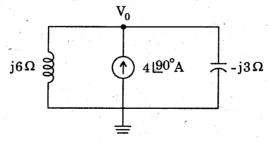

- 196. An RC circuit with $R = 150~\Omega$ and $C = 2~\mu$ F is excited by a dc source of 15V by closing the switch at t = 0. The initial and final voltage across the capacitor are respectively.
 - (A) 10 V, 15 V
 - (B) 15 V, 0 V
 - 0 V, 15 V
 - (D) 0 V, 10 V
 - (E) Answer not known
- 197. Two series resonant filters are shown in the figure below. Let the 3-dB bandwidth of filter 1 is B_1 and that of filter 2 be B_2 . The value of $\frac{B_1}{B_2}$ is



- (A) 4
- (B) 1
- (C) 1/2
- (D) 1/4
 - (E) Answer not known

198. Thevenins voltage (V_{Th}) and Thevenins resistance (R_{Th}) at terminals a and b in circuit shown below is

- (A) $V_{Th} = 50 \text{ V}, R_{Th} = 20 \Omega$
- $V_{Th} = 40 \text{ V}, R_{Th} = 4\Omega$
- (C) $V_{Th} = 4 \text{ V}$, $R_{Th} = 40 \Omega$
- (D) $V_{Th} = 50 \text{ V}, R_{Th} = 5\Omega$
- (E) Answer not known
- 199. The voltage V_0 across the capacitor in the circuit is



(A) $5 0^{\circ} V$

(B) 7.071 45° V

7.071 - 45° V

- (D) $5|-45^{\circ} \text{ V}$
- (E) Answer not known
- 200. Find the voltage V₀ of the circuit shown below,

(A) -24 V

(B) -8 V

(C) 8V

- 24 V
- (E) Answer not known

CEEE/2022 64