Register					
Number	100			13	

2019 TEXTILE TECHNOLOGY (DEGREE Std.)

Time Allowed: 3 Hours]

[Maximum Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. The applicant will be supplied with Question Booklet 15 minutes before commencement of the examination.
- 2. This Question Booklet contains 200 questions. Prior to attempting to answer, the candidates are requested to check whether all the questions are there in series and ensure there are no blank pages in the question booklet. In case any defect in the Question Paper is noticed, it shall be reported to the Invigilator within first 10 minutes and get it replaced with a complete Question Booklet. If any defect is noticed in the Question Booklet after the commencement of examination, it will not be replaced.
- Answer all questions. All questions carry equal marks.
- 4. You must write your Register Number in the space provided on the top right side of this page. Do not write anything else on the Question Booklet.
- 5. An answer sheet will be supplied to you, separately by the Room Invigilator to mark the answers.
- 6. You will also encode your Question Booklet Code with Blue or Black ink Ball point pen in the space provided on the side 2 of the Answer Sheet. If you do not encode properly or fail to encode the above information, action will be taken as per Commission's notification.
- 7. Each question comprises four responses (A), (B), (C) and (D). You are to select ONLY ONE correct response and mark in your Answer Sheet. In case you feel that there are more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each question. Your total marks will depend on the number of correct responses marked by you in the Answer Sheet.
- 8. In the Answer Sheet there are four circles (A), (B), (C) and (D) against each question. To answer the questions you are to mark with Blue or Black ink Ball point pen ONLY ONE circle of your choice for each question. Select one response for each question in the Question Booklet and mark in the Answer Sheet. If you mark more than one answer for one question, the answer will be treated as wrong. e.g. If for any item, (B) is the correct answer, you have to mark as follows:

- 9. You should not remove or tear off any sheet from this Question Booklet. You are not allowed to take this Question Booklet and the Answer Sheet out of the Examination Hall during the time of examination. After the examination is concluded, you must hand over your Answer Sheet to the Invigilator. You are allowed to take the Question Booklet with you only after the Examination is over.
- 10. Do not make any marking in the question booklet except in the sheet before the last page of the question booklet, which can be used for rough work. This should be strictly adhered.
- 11. In all matters and in cases of doubt, the English version is final.
- 12. Applicants have to write and shade the total number of answer fields left blank on the boxes provided at side 2 of OMR Answer Sheet. An extra time of 5 minutes will be given to specify the number of answer fields left blank.
- 13. Failure to comply with any of the above instructions will render you liable to such action or penalty as the Commission may decide at their discretion.

SEAL

1.	rne	tensile properties of synthetic libers	aepe	na on	
	(A)	Melting point of the polymer			
	(3)	Molecular weight of the polymer			
	(C)	Extrusion pressure			
	(D)	Static changes			
2.	The	work of rupture is equal to			
	(A)	Gain of potential energy			
	(B)	Loss of potential energy			
	(C)	Gain of kinetic energy			
	(D)	Loss of kinetic energy			
3.	The	Instron Tensile Tester is working u	nder -		- principle
	(A)	Constant rate of Loading			
	(B)	Constant rate of Traverse			
	(C)	Constant rate of Tension			
	(D)	Constant rate of Elongation			
4.	The	Work of rupture of fiber will be			
	(A)	Directly proportional to its mass p	er un	it length	
	(B)	Inversely proportional to its mass	per u	nit length	
	(C)	Directly proportional to its length	per m	ass	
	(D)	Inversely proportional to its length	n per	mass	
5.	Elas	tic recovery is highest for —		among the fol	lowing fibres
	(A)	Cotton	(B)	Nylon	
	(C)	Casein	(D)	Silk	
6.	The	initial modulus value is lowest for –		fibre	s.
	(A)	Acetate	(B)	Nylon	
	(C)	Glass	(D)	Silk	
			- 1		

7. "	respect to leakage of static charge through the air								
	(A)	30 V	/cm		•	(B)	30 kV/cm		
	(C)	30 m	ıV/cm		-	(D)	10 kV/cm	•	
8.	The	dielec	tric pro	perty is	high for w	hich one o	f the following mat	erial?	
•	(11)	Celle	ophane	film		(B)	Nylon film		
	(C)	Woo	l			(D)	Nylon fibre		
9.		ich one mique?		ne follo	wing state	ement is	correct with respe	ect to wet	spinning
	(A)	Microporous and fibrillar structure can be obtained by this technique							
	(B)	Normally used to produce finer denier fibres							
	(C)	Polymer concentration for spinning is 30-40%							
	(D) .	Fibr	es are p	roduce	d at higher	speeds	•	•	
							٠.		
10.	In dry spinning —————————————————————————————————								
	(A)	Dim	ethyl fo	rmamic	de	(B)	Dimethyl acetami	de	
	(C)	Dim	ethyl sı	ulphoxid	de	(D)	Nitric acid		
11.	Cho			t polym	er – solven	t combina	tion for dry spinnir	ng process.	
	(0)	Polyn	ner lose ace	stata		1.	Solvent Water		
	(a) (b)			acetate		2.	Dimethyl formam	ida	
	(c)		urethar			2. 3.	Methylchloride	TUE	
	(d)	_	inyl alc			4.	Acetone		
	(-)		-		•				
		(a)	(b) .	(c)	(d)			٠.	
•	(A)	3	. 1	4	2				
	(B)	3	4	2	1.	-		•	•
•	(C)	2	3 3	4	1				
7		4		7.					

12.	Wh: fibr		of the	following	ng is	not correct w	ith respect t	o heat settii	ng of synthetic
-	(A)	Incr	eases c	rystallini	ity				-
	(B)			rystallite	•			•	
	(C)			-		e unit cell			•
		•	_			al strains			
		11101	COBOD I	obiuuui i	110111	ar ovranio			
13.		ch the		t combin	ation	s with respect	to the air t	extured yarı	n property and
		Prope	-	_		Applications			
•	(a)			characte		Belts and S	traps		
	(b)	_	yarn		2.	Tarpaulin		٠.	
•	(c)		friction		3.	Sports and	leisure wear	•	
٠.	(d)	Dime	nsional	stability	4.	Sewing thre	eads		
-		(a) ·	(h)	(a)	(4)				
	(A)	(a) 2	(b) 4	(c) 1	(d) 3				
	(B)	4	3	2	1				-
		4	3	1	$\overline{2}$			•	
	(D)	3 -	4	2	1				
14.	fash (A) (B) (D)	Atac Isota Synd	ove and tic Poly actic Po	l below o vmer lymer ic Polyme	f the p	gular polyme polymer backb	•	in a regul	ar alternating
15.		-	synthet weight	-	mides	and polyester	s, fiber form	ation become	es possible at a
	(A)	2000	g/mol			(B)	3000 g/mol		
	(C)	4000	g/mol			(D)	5000 g/mol	••	
16.	Poly	mer h	aving l	inear pol	ymer	chain and no	or very few	short side ch	ains are called
		HDF	E			(B)	HMHDPE	-	
	(C)	LDP	E	•		(D)	LLDPE		
Δ.						5			CETET/19

17. Match the length to breadth ratio of the following fibres:

(a) Cotton

1... 3000

(b) Ramie

2. 33×10^6

(c) Silk

3. 1209

(d) Flax

4. 1400

(a)

(b)

(d)

(A) 1

3

. 4

(B) 4

1

.

(c)

2

3

1 2

(C) 3

2

1

2 4

3

M.

..

18. In SI units, tenacity of fibre is expressed in mN/tex, which is equal to gf/den X

(A) 9.8

(B) 19.6

88.3

(D) 111.1

19. Pick the odd fibre from the list, based on heterochain and carbo chain arrangement.

(A) Polyester

(B) Polyamide

Polyacrylonitrile

(D) Polyurethane

 $20. \quad \textbf{Match the following:} \\$

(a) Vegetable origin.

1. Dynel .

(b) Animal origin

2. Polynosic

(c) Regenerated cellulose fibres

3. Vicuna

(d) Synthetic Fibre

4. Abaca

(a) (b) (c). (d)

(A) 2 4 1 3

(C) 4 3 1 2

(D) 3 1 4 2

21.	Acry	lic fibre is made from atleast 85%	6 by weig	tht of — monomer
	(A)	Acrylic acid	(25)	Acrylonitrile
	(C)	Acrylamide	(D)	Methyl methacrylate
	-		-	
22.		chemical that is used to convert manufacture of viscose rayon is	soda ce	llulose to sodium cellulose xanthate in
	(A)	sodium xanthate	1	carbon disulphide
•	(C)	sodium disulphide	(D)	sodium hydroxide
. •	•		•	
23.	The	pair of fibres most prone to accum	nulation	of static change is
	(A)	cotton and polyester		silk and polyester
		polyester and polypropylene		silk and polypropylene
•.				
24.	flatte	is the major part of ened, cigar shaped cells with a m		fibre and is made up of long, slightly ar the centre.
	(A)	medulla	(B)	cuticle
	(6)	cortex	(D)	keratin
			:	
25.	The	approximate number of cellobiose	units ir	cotton is
	(A)	175	(B)	250
	(C)	300	(D)	5000
26.		ch of the following reagent would and silk fibres?	l be suita	able to separate wool from a mixture of
	(A)	5% NaOH solution	. (B)	dilute H ₂ SO ₄ (2% solution)
· ,• ,	(C)	Conc. HCl	(D)	Acetone
27.	In a 1500		does not	burn, but melts at a temperature above
	(A)	Arnel	(P)	Fibre glass
	(C)	Polyester	(D)	Viscose Rayon
		•	-	

28. The twist multiplier for the combed cotton ring yarn used for weaving normally lies in the range of

29. The contraction factor of yarn (Cy) and surface angle of twist (α) of fibre with respect to axis of yarn can be related as

(A)
$$Cy = \frac{1}{2}(1 + \cos \alpha)$$

(B)
$$Cy = \frac{1}{2}(1 + \tan \alpha)$$

(C)
$$Cy = \frac{1}{2}(1 + \csc \alpha)$$

$$Cy = \frac{1}{2}(1 + \sec \alpha)$$

30. The relationship between yarn extension (e_y) and filament extension (e_f) , when the idealised helical structured filament yarn is subjected to tensile loading, is ______. It is assumed that there is no change in yarn diameter during extension. In the equational α is the first angle of filament with respect to axis of yarn

(A)
$$e_v = e_f \cdot \cos^2 \alpha$$

(B)
$$e_f = e_y \left(1 + \frac{\sec \alpha}{2} \right)$$

$$e_f = e_y \cdot \cos^2 \alpha$$

(D)
$$e_y = e_f \left(1 + \frac{\sec \alpha}{2}\right)$$

31. Select the correct relationship between speeds in the case of leading bobbin method of winding in moving frame; in the equation

L - delivery rate (m/min)

 n_b - rotational speed of bobbin (rpm)

 n_s - rotational speed of flyer (rpm)

d - diameter of bobbin (m)

(A) $L = \frac{n_b}{\text{Twist per unit length of moving}}$

(B)
$$n_s = \frac{L}{\pi \cdot d} + n_b$$

$$n_b = \frac{L}{\pi \cdot d} + n_s$$

(D)
$$L = n_h - n_*$$

	(4)	and	—— draft.	/D \	104-19		
		1.1 to 1.2			1.2 to 1.3		
	(C)	1.3 to 1.7	•	(D)	1.7 to 2.0		٧.
3.	even	producing blended yarr ness along ————— ness in ——————————————————————————————————	of pro	nning n oduct a	nill, sliver blendi nd flock blendir	ng gives good ng gives good	blendin blendin
	(A)	length, transverse		(B)	transverse, leng	zth	1
	(C)	length, length		(D)	•	,	
4 .		limiting irregularity o					
 	the e	equation n is the nums sectional size of fibres	ber of fibre				
	(A)	$\frac{100}{n}, \frac{80}{n}$		(B)	$\frac{80}{n}$, $\frac{100}{n}$		
	(C)	$\frac{80}{\sqrt{n}}, \frac{100}{\sqrt{n}}$		(b)	$\frac{100}{\sqrt{n}}$, $\frac{80}{\sqrt{n}}$		
ó.	The	total draft given at the	e card is D_{i}	, actua	al draft is D_a (Te	x _{lap} /Tex _{sliver}) ar	ıd waste
	remo	oved at the card is W.			,	•	
		t the correct relationsh	up			:	
	(A)	$W = 100 \left(\frac{D_a}{D_T} - 1 \right)$		(B)	$W = 100 \left(\frac{D_T}{D_a} - 1 \right)$		
	(C)	$W = 100 \left(1 - \frac{D_a}{D_T} \right)$		(D)	$W = 100 \left(1 - \frac{D_T}{D_a} \right)$		
	(-)						
		h one of the following t	ask is not n	ormall	y carried out in b	low room?	
		h one of the following to	ask is not n	ormall	y carried out in b opening to fibre		

(B)

(D)

cylinder and flat, 0.1 mm

cylinder and doffer, 0.1 mm

cylinder and flat, 0.25 mm

cylinder and doffer, 0.25 mm

38. `	Choo (i)	ose the correct statement for selection Starting handle is on the right ha	-	ne left hand dobby among the following e of the loom
	(ii)	Pattern cylinder rotates in the clo	ckwise	direction
	(iii)	Pattern cylinder rotates in the ant	i–clock	wise direction
	(iv)	Straight feder operating the top ro	w of h	ooks
•	(A)	(i),(ii)		
	(B)	(ii),(iii)		
	10	(iii),(iv)		
,	(D)	(i),(iv)		
39.		andard card for a ———————————————————————————————————	needle	machine measures about 6 cm in width
	<i>(</i>	400	(B)	600
	(C)	800	(D)	1200
. '				
40.		om runs at 300 picks/min and pr ing in inches.	oduces	fabric at 6 inches/min. Find out pick
	(A)	0.001	(B)	0.002
	10	0.02	(D)	0.2
•	,			
41.	Whi	ch of the following particular is not	necess	sary while designing negative tappet?
	(A)	Weave structure	(B)	Number of picks to a repeat
	(C)	Dwell period of the heald frame	V(D)	Diameter of the treadle bowl
	•		•	
42.		t is the speed ratio between tapped weave?	et sha	ft and crank shaft while producing 4/4
•	(A)	1:2	(B)	1:4
	· (C)	1:6	(0)	1:8
4 3.	Find	out the false statement with respe	ct to ia	acquard shedding.
	(A)	Griffe moves vertically to operate	•	
	(B)	• -		on of a pick, a new card is presented to
	(C)	The hooks raised or lowered to for	m the	warp shed.
				umber of books in all types of jacquard

loom.

44.	Which one of the following auxiliary motion is used to keep the width of cloth fell same as that of warp in the need?								
	(A)	Warp Protector		(B)	Warp stop				
-	(C)	Weft stop		JB)	Temple motion				
4 5.		ch one of the follo hanism efficiency?	wing statemer	nt is	incorrect to achieve	a pirn changing			
	(A)	the shuttle is in the	e correct positio	n					
	(B)	weft tension is mai	intained as zero	,	•				
	(C)	the ejected bobbin	is guided into a	stora	ige can				
	(D)	the weft yarn from	the new pirn is	s guid	ed into the shuttle eye)			
		,				•			
46.	Cent	tre weft fork motion i	is a ———	<u> </u>					
	(A)	warp stop motion		·					
•	(B)	warp protector mot	tion	•		. 🐔			
		weft stop motion							
	(D)	automatic warp be	om chonging m	otion					
	(D)	automatic waip bes	am changing m	outon.					
						3			
47.	Acco	According to KESF system which of the following is correct?							
	(A)	FB1 – Bending	•						
	(B)	FB2 - Surface frict	ion and variati	on					
	(0)	FB3 - Compression	n.						
	(D)	FB4 – Tensile and	shearing						
48.	Dim	ensional stability tes	st can be carried	d out v	with the help of				
	(A)	FAST 1		· (B)	FAST 2				
	(C)	FAST 3		(D)	FAST 4				
•									
49 .		- /			ength of approximate over the average valu				
	(A)	Neps	•	1	Thick Places				
	(C)	Thin Places		(D)	Slubs				
		·			•				

50.	The :	minimum number of twist needed fo	or plie	ed and cabled yarn is
	(A)	10		
	(3)	20		
	(C)	30		
	(D)	50		•
				•
51.	A hi	gh initial Young's Modulus indicates	3.	•
	(A)	Great extensibility	(3)	In extensibility
	(C)	High work factors	(D)	Low work factor
52 .	CV%	of doubted strands can be calculate	d by	
		CV% of individuals	(B)	CV% of individuals $\times \sqrt{n}$
	A(c.r.)	√n	(1)	CV /6 of illusviduals ~ V//
	(C)	CV% of individuals	(D)	CV% of individuals $\times n$
	·	n	(2)	
		:. · · · · · · · · · · · · · · · · · · ·		
53.		fabric strip methods, the length of t een the jaws.	est sp	pecimen should be inch
	(A)	2	(B)	4
		8	(D)	12
	40,	·	(2)	
54.	Tho	range of short term periodic variatio	n acc	ording to fiber longth is
04.	The .	1 to 10 times the fiber length	(B)	10 to 100 times the fiber length
	(C)	-	, .	1000 to 10000 times the fiber length
	(0)	100 to 1000 times the their length	(D)	1000 to 10000 times the fiber length
		rding to comb sorter diagram wh	nich o	of the following expression is used to
55	- Accor			is the following expression is used to
55.		sure dispersion percentage?		
55.		sure dispersion percentage: Upper-quartile length/Effective let	ngth	
55.	meas		_	
55.	meas (A)	Upper-quartile length/Effective len	ngth	
55.	meas (A)	Upper-quartile length/Effective length/ Effective length/	ngth	
55.	(A) (B)	Upper-quartile length/Effective length/ Effective length/	ngth	
55. 56.	(A) (B) (D)	Upper-quartile length/Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length	ngth gth	rtional to work of rupture of a yarn?
	(A) (B) (D)	Upper-quartile length/Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length	ngth gth	rtional to work of rupture of a yarn? Linear density
	(A) (B) (D)	Upper-quartile length/Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length/ Effective length ch of the following parameter is not parameter	ngth gth propo	

57.		y is Sodium trichloroacetate an ting of polyester/cotton fabric wit		al ingrediant of the printing paste in se/reactive dyes?					
	(A)	to catalyse the reaction between	n reactiv	ve dye and cotton during steaming.					
	(B)	to protect the cotton fabric duri	ng stear	ning at high temperature.					
	(C)	C) to protect the polyester fabric during steaming at high temperature.							
	(D)	to catalyse the reaction between	n disper	se dye and Polyester during steaming.					
58.	Adva dye		ıming of	Polyester fabric printed with disperse					
	(A)	continuous process and bright p	rints.						
	(B)	gives full colour yield and brigh	t prints						
	(C)	continuous process and full colo	ur yield	-					
	(2)	continuous process and gives fu	ll colour	yield and bright prints.					
59.	Which one of the following agents is used as discharging agent in printing polyester with disperse dye?								
	(A)	Sodium Chloride	(B)	Acetic acid					
	101	Stannous Chloride	(D)	Citric acid					
60.		evelopment of white design on col tive dye, the printing paste should		kground using resist style printing with n.					
	(A)	alkali	(6)	acid					
	(C)	salt	(D)	hygroscopic agent					
61.	The	The reason for the formation of scumming defect during roller printing is due to							
	(1)	insufficient scrapping of the pri	nting pa	aste from the unengraved portion of the					
	(B)	deposition of loose fibres on the	surface	of printing roller					
	(C)	improper engraving of the desig	n on the	printing roller					
	(D)								
62.		main quality parameter of the	thicker	er film developed on the fabric after					
	41)	should be brittle	(B)	should be flake off					
	(C)	should not be brittle	(D)	should not be flexible					
63.		is not a natural polyn	ier base	d thickener.					
	(A)	Carboxymethyl Cellulose	(B)_	Methyl and ethyl Cellulose					
	(C)	Sodium alginate	(1)	Polyvinyl alcohol					
Δ			13	CETET/19					

[Turn over

64.	In er	nzyme desizing the action of both α – and β –amylases are the
•	(A)	rupture of C1 C6 linkages of starch
	(B)	rupture of C5 – C6 linkages of starch
	(a)	rupture of C1 – C4 linkages of starch
	(D)	rupture of C1 – C2 linkages of starch
٠		
65.	The	specky dyeing problem occured in dyeing of polyester fabric is due to
	(A)	Acid treatment of fabric before dyeing
	(B)	Bleaching of fabric before dyeing
	40	Singeing of fabric before dyeing
	(D)	Alkali treatment of fabric before dyeing
66.		aring and Milling can be processed with minimum quantity of alkali at peratures not exceeding
	(1)	50°C (B) 55°C
	(C)	60°C (D) 65°C
	•	
67.		seam uses only one piece of strip of fabric and turned on both edges
	(A)	class 5 (B) class 6
	· (C)	class 7 class 8
	′	
68.		is a passing a loop of thread through another loop formed by a
	diffe	erent thread
	(A)	Intra looping Inter looping
÷	(C)	Inter lacing (D) Double looping
69.	The	purpose of laying underlay paper ply in the cutting process is
	4	to ensure easy transfer of the spread along the table
	(B)	to avoid fusing of fabric plys
	(C)	to move hand operated cutting machine easily
	(D)	to avoid fabric extension at the bottom of lay

70.				verts the rotary machine drive into a
		able reciprocating action for the nec		
	(A)	Yarn feeder	(B)	Cylinder
	(C)	Jack	MED)	Cam
71.	-		a cove	red by the yarn in one loop to the area
		pied by that loop.	-	
	(A)	Stitch	(B)	Stitch length
	(C)	Stitch density	(D)	Tightness factor
72.	Whi	ch of the following property of texti	le fibre	e is important for texturising of yarn?
	(A)	Hydrophilicity	(B)	Hydrophobicity
	431	Thermo plasticity	. (D)	Thermal conductivity
73.	In a	utomotives, in general —————	c	arpeting is used in the passenger cabin
	(A)	Tufted cut pile	(B)	Rib based
	(C)	Cord based	(D)	Terry pile
74.	Mair	n natural fibers used in ropes are		
	(i)	Cotton		
	(ii)	Sisal	•	
	(iii)	Manila		•
	(A)	(i) and (ii) only	(15)	(ii) and (iii) only
	(C)	(i) and (iii) only	(D)	(i) only
75.		———— belting is used for fire r	esista	nce
-	(A)	PVA	_	PVC
	(C)	Nylon	(D)	Polyester
76.		r reinforced composites that reduc f in the applications namely boat h		rall weight and cost of fabrication find d car bodies.
	(A)	Carbon – reinforced composites	(B)	Ceramic – reinforced composites
	100	Class mainfanced commonitors		

		•		•
77.	In h	ot gas filters, ————	—— fibres are n	nostly preferred.
	4/2)	Mineral	(B)	Bast
	(C)	Regenerated	(D)	Seed
•				
78.		omponent filaments webs		ed nonwovens based on ———————————————————————————————————
	(A)	Co-PET/PET	(B)	PE/PET
	(C)	PET/PA6	·(D)	PP/PE
79.		hese type of nonwoven f surface tension applied in Biocidal finishes		Fluorocarbons are claimed to produce a persion medium Flameproof finishes
	(C)	Softener finishes		Waterproof finishes
30.		hydro entanglement, u oentanglement effect un		
	(A)	lower fineness	(B)	Lower stiffness
	(C)	higher stiffness	(D)	higher fineness
	•	•		
31.	In ne	eedling, use of longer fibr	e results in ——	of needled felt.
	(A)	•	(B)	lower felt density
	10)	lower air permeability	(D)	higher air permeability

82. In needling, stitch density (Ed) is calculated by

 $[n_h - \text{number of lifts, min}^{-1}]$

 N_D – number of needles by 'm' working width, m^{-1}

 V_V — web outlet speed, $m.min^{-1}$]

(A)
$$Ed = \frac{N_D \cdot V_V}{nh \cdot 10^4} \text{ cm}^{-2}$$

(B)
$$Ed = \frac{nh^2 \cdot V_V}{N_D^2 \cdot 10^4} \text{ cm}^{-2}$$

(C)
$$Ed = \frac{n_h \cdot V_V}{N_D \cdot 10^4} \text{ cm}^{-2}$$

$$Ed = \frac{n_h \cdot N_D}{V_V \cdot 10^4} \text{ cm}^{-2}$$

83. Production rate of web laying machine (p) is calculated by

 $[AB_{eff}$ - effective web width, m

 m_F – web mass g/m²

 V_F – card web fed rate, m/min]

- (A) $p = \frac{AB_{eff} \cdot V_F \cdot 60}{m_F \cdot 1000} \text{ kg/h}$
- (B) $p = \frac{m_F \cdot V_F \cdot 60}{AB_{eff} \cdot 1000} \text{kg/h}$
- (C) $p = \frac{AB_{eff} \cdot m_F \cdot 60}{V_F \cdot 1000} \text{ kg/h}$
- $p = \frac{AB_{eff} \cdot m_F \cdot V_F \cdot 60}{1000} \text{ kg/h}$
- 84. The concentration of fibre per 1000 ml of water that are normally required as per level of dilution in conventional flat wire machines for wet-laid web formation.
 - 1(2)
 - . 0.5 grams

(B) 0.3 grams

(C) 0.05 grams

- (D) 0.03 grams
- 85. Which one of the following chemical can be recovered from effluent for reusage?
 - (A) Starch

Poly Vinyl Alcohol

(C) Sodium Carbonate

- (D) Hydrogen peroxide
- 86. Choose the correct statements from the following for energy conservation
 - 1. The waste water and exhaust air/gas can be used for heating the clean and cold input water
 - 2. Renewable energy could be utilized to minimize the thermal energy consumption
 - 3. Good quality of soft water reduces the usage more quantity of water

17

- 4. Low calorific fuel increases the energy conservation
- (A) 1, 2
- (\dot{B}) 2, 3
- (0) 1, 2, 3
 - (D) 3, 4

87.	In m	narketing management, the psychological theories was propounded by							
	(A)	B. H. George							
•	(T)	Philip Kotler							
ı	(C)	Sigmund Fraud							
ı	(D)	Thorstein Vebler							
	The heat treatments are true with one or combinations of the following statements in Nylon 6.								
((I)	Heat Exposure upto 120°C improves the dye uptake							
	(II)								
	(III) The crystalline regions are becoming larger and more perfect. (IV) Non-Crystalline regions become more oriented and less mobile								
	(A)	(I), (II)							
	(B)	(II), (III), (IV)							
,		(I), (II), (III)							
	(D)								
((D)	(IV)							
	If a fibre of thermoplastic nature is cooled down through the transition in a deformed state, then it will become rigid-set in the new form. It is called								
((A) •	Annealing							
~	(3)	Heat setting							
((C)	Melting							
((D)	Glass-Transition							
		strategy of is that everyday must be an improvement day, in the al context, in our personal lives, or at work.							
((A)	5 S							
((B)	Total Productive Maintenance							
((C)	Total Quality Management							
A.		Kaizen							
CETE'	T/1 0) 18 \triangle							
		. <u>20</u> .							

The	continual improvement tool under Total Quality Management that has Seiri,
Seite	on, Seiso, Seiketsu and Shitsuka are the terms originated from ————.
(A)	China
(B)	Italy
10)	Japan
(D)	USA
	system type that integrates ERP, SCM and CRM in major e-business ications is —————.
(A)	Functional Business system
(B)	Transaction Processing system
(C)	Accounting and Finance system
(2)	Cross-functional Enterprise system.
Econ	omic order quantity is computed so that
1	The ordering and carrying costs are least
(B)	The ordering and stock out costs are least
(C)	The ordering and back ordering costs are least
(D)	The cost of materials are least
An e	xample of fixed cost is ———.
(A)	Direct material cost
(B)	Direct labour cost
100	Taxes
(D)	Lubricants
	Seite (A) (B) (D) The applit (A) (B) (C) (D) An experimental (A) (B) (C) (D)

95.	The S	Specific Torsional Rigidity (m	N mm²/tex²)	is the lowest for
	(A)	Wool	(B)	Polyester
		Secondary acetate	(D)	Cotton
96.	The l	Poison ratio (σ_{LT}) for Nylon f	ibre is about	;
	(A)	0.19	(B)	0.29.
•	(C)	0.39	(D)	0.49
97.	The '	Torisional Rigidity of fiber do	es not depen	nd on
	(A)	Period of the oscillation		
	(B)	Moment of inertia of the bar	r	
	(()	Flexibility of fiber		
	(D)	Length of fiber		
		•		
98.	The i	lexibility of a fiber NOT depe	ends on	
	(A)	Tensile modulus		•
	(B)	Density	,	
	(C)	Thickness		
	(6)	Fineness		
99.	Incre	ase in relative humidity, the	creep behav	iour of acetate rayon is
	A	Increased		,
	(B)	Decreased		
	(C)	Increased and then decrease	ed	
	(D)	Remain same		
100.	The e	elastic recovery is ratio betwe	en	· · · · · · · · · · · · · · · · · · ·
	(A)	Elastic extension/Total exte	nsion	
• •	(B)	Total extension/Elastic exte	nsion	•
	(C)	Elastic extension/Work exte	nsion	•
	(D)	Work extension/Elastic exte	nsion	
CET	ET/19		20	

101.	The (A) (C)		— fibre. B) Cotton (6) Wool						
102.	The	increasing order of flexural rigidit	y of fibres among the below	w fibres is					
	1.	Silk		·					
	2.	Polyester							
	3.	Casein							
	4.	Cotton							
			B) 3-4-2-1						
. `	(C)	`_	D) 2-3-4-1						
103.	Whie fibre	ch one of the below given factors are es?	not directly influence the cree	p of textile					
	(A)	Relative Humidity of atmosphere							
	(B)	Stress on fibre	•						
	(C)	Temperature of fibre	•						
		Melting point of polymer							
104.	The	Dichroic constant for Ramie fibre is	•						
	(A)	3 (1	3) 6						
	LES.	9 (1	D) 12						
105.	The	ratio of refractive index is							
	$\langle A \rangle$	Sin of angle of incidence to sin of ang	le of refraction	•					
	(B)	Sin of angle of refraction to sin of angle of incidence							
	(C)	Cos of angle of incidence to cos of ang	le of refraction						
	(D)	Cos of angle of refraction to cos of ang	gle of incidence						
106.	The reas	shrinkage (%) of thermoplastic fibre i	ncreases because of one of th	e following					
	(A)	Reducing dry heat (°C)							
	(B)	Reducing tension of fibre (N)	•						
•	(C)	Presence of high per cent of oriented	non-crystalline material in fibr	e					
	(D)	Melting of low percentage of small cr	ystallites						
\triangle		21		CETET/19					

[Turn over

107.	In —	spinning, the spinning solution is extended through the spinneret th is suspended at a short distance above the coagulation bath.
	(A)	Melt spinning
	(B)	Wet spinning
•	(c)	Dry-Jet-Wet spinning
	(D)	Dry spinning
108.		nelt spinning process, melt homogeneity and uniform temperature profile is
	(A)	Spinneret
	(B)	Spin pack
	(c)	Static mixer
	(D)	Extruder
109.	Typi (A) (B) (C) (D)	cal Fibre-forming acrylic polymers have M_n in the range of $45,000-60,000$ $60,000-75,000$ $75,000-90,000$ $90,000-1,40,000$
•		
110.	Whi	ch one of the following is incorrect for making spinneret?
	(A)	Nickel
	B)	Molded plastic
	(C)	Stainless steel
	(D)	Tantalum
111.	Dras	wing of low molecular weight polymers leads to
111.		High chain slippage
	(B)	High orientation
	(C)	High neck stability

(D)

High strain hardening

112.		———— is defined as the en	nergy o	of vapourization divided by its molar
	volu	·	. 07	
	(A)	Coherent energy density	(B)	Cohesive energy difference
	(C)	Coherent energy difference	(D)	Cohesive energy density
113.	The	ratio of evaporation to diffusion ra	te for s	crated cross section is
	(A)	=1	(B)	>1
	(C)	<1	(D)	>>1
114.		is the simplest mo	et econ	nomical and technologically the most
117.	eleg	ant method of producing filaments		comical and beenhologically the most
	(A)	Dry Spinning	(B)	Wet Spinning
	40)	Melt Spinning	. (D)	Dry-jet-wet Spinning
·			. 1	6.61
115.	be p	roduced.	wide va	rriety of fiber cross sectional shapes can
	(A)	Melt	(B)	Wet
	(C)	Dry	(D)	Dry-jet-wet
	•			
116.	The	wet spinning technique is used to	produce	e ——— fibre.
	(A)	Polyester		
,	(B)	Viscose		
	(C)	Cellulose acetate		· · ·
	(D)	Nylon	·	
117.	The	speed of false twist spindle in false	e twist t	texturisation method ranges between
	(A)	1000 – 10,000 rpm	(B)	10,000 - 50,000 rpm
	(C)	$50,000-1,00,000 \; ext{rpm}$, ,	1,00,000 - 1,50,000 rpm
118.		ament of 200 meter has a diamete ament of similar type but with a di		μ m. What will be the linear density of of 20 μ m?
	(A)	128	(B)	160
	(C)	250	(D)	312

119.	Mat	ch the fo	llowir	ıg:								
	(a)	Vegetab			1.	Ca	aroa					
	(b)	Bast fib			2.	. Ar	igora		15	•		
	(c)	Leaf fib	re	•	3.	Ne	ettle					
	(d)	Fruit fil	ore		4.	Ka	apok		•			
	(e)	Fur fibr	е .	•	5.	Co	ir					
		(a)	(b)	(6)	(4)	(0)		,		•	_	
•	(A)		4 .	(c) · 1	(d) 3	(e) 2			•		-	
,	(B)	5 2	5	4	1	3		•	•			
•		4	3	1	5	2						
	(D)	3	1	5	2	4						;
120.	The	fineness	of wo	ol fibre	is gener	rally ex	xpress	sed in				
-	(A)	microg				-	(B)	microns				
	(C)	denier					(D)	tex				
	(-)			•								
121.	Whi	ch of the	follov	zing sne	cies dos	esn't be	elong	to wild silk?		•		
		Bomby			cies do		(B)	Tussar				
'	((1)		X 14101	.1					•			
	(C)	Muga		.•			(D)	Eri				
100	en e		4			. ,			0.4	•		
122.		cellulose	conte	nt in th	e cottor	1 is ab	out —		— %.			
	(A)	80%		:			(B)	84%				
	(C)	88%					(D)	94%		•		
	_										•	
123.	In w	hich of tolled?	the fo	llowing	fibre, t	he de	gree o	f orientation	n at mole	cular l	evel ca	ın be
,		Polyest	or				(B)	Ramie				
	(0)	Sisal				•						-
	(C)	Sisai					(D)	Kneaf			•	
104	3375.2	ah aftha	fallan	.i ~ £1		4-h1- £		61+ <i>6</i> -	1	. i . o		
124.			ющом	ing nor	e is sui	table i	_	as filters fo	r cnemica	11S?		
	(A)	Abaca	•				(B)	Nettle			•	
•	(C)	Eri Sill	Σ,				(D)	Asbestos				
105	a ii	.1	NT/OPT			· • •	.1 6.	1 611 1	6 1 0			
125.			NOT	tne basi	c unit f	or whi		he following				
	(A)	silk					(B)	viscose ray				
	(C)	cotton					(D)	cuprammo	nium ray	on		
CETI	ET/19	• ·				24	Į.					. 🛆

- 126. In the longitudinal cross-section of cotton, if 'L' represents width of lumen and 'W' represents wall width, then according to ISI, the following is true for a matured fibre
 - $(A) \qquad 1 \le \frac{L}{W} < 2$

(B) $1.5 \le \frac{L}{W} < 2.5$

 $\mathcal{L} = \frac{L}{W} < 1$

- (D) $\frac{L}{W} \ge 2$
- 127. The presence of medulla in wool is to
 - (A) produce good results in dyeing
 - (B) promote the growth of fibre
 - (C) increase the protective property of fibre
 - (D) enhance spinning property
- 128. Which one of the following spinning process is based on rubbing technique
 - (A) DREF 3 spinning
 - (B) Air-Vortex spinning
 - (C) Probtex Integrated Composite Spinning
 - Self twist spinning
- - (A) 10-20%; higher

(B) 10-20%; less

20-40%; higher

- (D) 20-40%; less
- 130. The flange number of ring used in ringframe is related to
 - (A) Surface inclination of ring with respect to horizontal plane
 - (B) Diameter of ring
 - (C) Height of ring
 - Width of upper part of ring over which traveller moves
- 131. Twenty slivers of 0.12 Ne each are fed to the sliver lap former. Total draft of 1.5 is applied in the machine. The linear density (ktex) of sliver lap is
 - (A) $\frac{0.12}{20 \times 1.5}$

(B) $\frac{0.591 \times 1}{0.12 \times 1}$

(C) $\frac{0.591}{20 \times 0.12 \times 1.5}$

(D) $\frac{0.12 \times 20}{0.591 \times 1.5}$

132.	Select the correct answer with respect to ringframe. ϕ is the diameter								
	$a - \phi_{ring}$								
	b – 9	balloon control ring							
	c – ¢	thread guide							
	(A)	b > c > a							
. :	JES .	b > a > c		:	•				
	(C)	a > c > b							
	(D)	c > b > a							
133.	The	traveller speed at 1	ringframe for the	follov	ving data is				
	The	spindle speed: 180	000 rpm .		•	•			
	Deli	very rate : 19.8 m/r	nin		•				
	Dier	neter of ring cop at	which winding t	aking	place : 42 mm				
	(A)	17850 rpm		(B)	17985 rpm				
	(C)	18000 rpm		(D)	18150 rpm				
134.	The and	ring bobbin (tube)			atio should lie between difference due				
	(A)	1:4,1:4.4		(B)	1:2, 1:2.2				
	(C)	4:1,4.4:1	-	(D)	2 : 1 , 2 . 2 : 1				
135.	draf	ting arrangement o	of ring frame is th	nat		apron at the roller			
	(A) It can be brought closer to the front roller								
	(B)	It is cheaper							
	(C)	(C) The elements beneath the drafting arrangement such as deflecting rolls, guides can be omitted							
•	(D)	The chance of cho	oking with fibre f	ly is k	ess				
136.						-, if the linear density tracted at the card is			
*	(A)	7.6		(B)	76				
	(C)	80		(D)	84				
		•							

CETET/19

137.		_	ciency of blow r cy of blow room a		and that of car	a 18 90%. The	combined
	(A)	4%		(B)	30%		•
•		96%	\frac{1}{2}	(D)	150%	• · · · · · · · · · · · · · · · · · · ·	
138.	In w	-	ı, a lead angle of		—— is prefered	for 30 to 100 (denier flat
	(A)	5°		(B)	10°		
	(C)	15°	•	(D)	20°		
						•	
139.		=	the weft veloci		* .		listance is
	(A)	Increases		(B)	Decreases		
	(C)	Constant		(D)	Stick and slip		
-							
140.	The		rojectile is su Ň/m².	bjected to	a maximum	acceleration	force of
	(A)	6800		(B)	7200		
	(C)	7600		(D)	8000	•	
· .							
141.			ake-up mechani from ————		e arrangement f		el pulling
•	(A)	Motor, bott	om shaft, sley s	word			
	(B)	Motor, bott	om shaft, pickin	g stick		· · ·	
	(C)	Motor, crar	nk shaft, heald f	rame			
3	(0)	Motor, crar	nk shaft, sley sw	ord		·	
142.	Posit	tive tappet sl	heddings are pre	efered for we	aving	•	
	(A)	at low spee			_		·
•	(B)	low dense v	warp beam			·	
	(C)	at low spee	d and high dens	e warp bean	ı .		
	(D)	at high spe	ed and high den	se warp bear	m.		

	this	leads to a ———	—— problem.		ises as the package diameter increases		
	(A)	Patterning	. (I	3)	Stitches		
	(C)	Soft nose	(1))	Snarls		
			-				
144.			_		rotates at 3000 rev/min, and the yarn the 'wind' of the machine?		
	(A)	6	✓	\$)	3		
	(C)	$\frac{1}{6}$	(I))	$\frac{1}{3}$		
145.			-		arp threads during sizing in the three he final length of the warp threads.		
	(A).	90 m	(I	3)	110 m		
		110.313 m	(I))	111.313 m		
	dens (C)	ity is 0.4 g/cm ³ , then 207.82 1298.85	calculate the mas (E	3)	f yarn on beam in kgs. 375 1385.44		
147.	The function of leather buffer present in the shuttle box is						
	(A) to strike the shuttle so that the weft thread will be passed across the warp threads						
	(B)	to pass the shuttle	parallel				
	(B)	<u>-</u>	-	цр	against the metal part of the spindle		
	(B) (D)	to prevent the pick	ter from beating u				
148.	(D) In air point	to prevent the pick stud to protect the leather	er from beating user strap present or ressure should be	ı tl			
148.	(D) In air point	to prevent the pick stud to protect the leather. tr-ject weaving, air pit of compressor and	er from beating user strap present or ressure should be minimum of abo	ab ut	he picking stick out ————————————————————————————————————		

149.	If pe	riodic variation is 5 times of its fibr	e leng	th, then it is
	(A)	Short term variation	(B)	Medium term variation
	(C)	Long term variation	(D)	Zero term variation
150.	In al fabri		ot use	ed to asses the amount of damage of the
-	(A)	Loss in weight of the fabric		•
	(3)	Loss in Elongation of the fabric		·
	(C)	Loss in Strength of the fabric		
-	(D)	Change the air permiability of the	fabri	c
151.	area cm² ?	of the supporting disk is 100 cm ² ,	actua	rea of the specimen is 200 cm ² and the
	(A)	0.1	(B)	0.25
		0.50	(D)	1.0
152.	Whic	ch of the following statements are co	orrect'	?
	1.	Viscose have a higher abrasion res	sistan	ce than poly propylene.
·	2.	Filament yarns are more abrasic stable fibre	on res	sistance than stable yarns made from
	3.	Low twist yarn have good abrasion	n resia	stance'
	4.	The crimp of the yarns in the fabr	ic doe:	s not affect abrasion property
	(A)	1, 2		
	(6)	2 only		
-	(C)	3, 4	_	
	(D)	3 only		•
153.	The t	twist factor of a yarn is directly prop	portio	nal to
	(A)	$1/\sin \theta$	(B)	$\cos \theta$
	(C)	$\tan \theta$	(D)	$\cot \theta$
154.	The 1	multiplying factor to convert cotton	count	to worsted count is
·		590.5		*
		0.1111		· •
		0.6667		•
_	<u>~</u>	1.500		

155.	According to Peirce and Lord, the relationship between maturity ratio (M) and the degree of thickening of cotton cell wall is				
	$(A) \qquad \theta = \frac{0.577}{M}$	$\theta = 0.577 M$			
	$(C) \qquad \theta = \frac{0.577}{\sqrt{M}}$	(D) $\theta = 0.577 \sqrt{M}$			

156. In which of the following technique the samples are taken from all parts of the bulk to achieve a representative of test sample?

Zoning technique

- (B) Spot technique
- (C) True biased technique
- (D) Random spot technique

157. The limiting oxygen index value for wool fibre is

(A) 18

(B) 24

(C) 16

(D) 32

158. Which one of the following compounds is used as stabilizers in foam preparation for textile finishing

- (A) Hydroxy ethyl cellulose
- (B) Sodium lauryl sulphate
- (C) Nonyl phenol-ethylene oxide
- (D) Sodium myristate

159. Calculate the % expression of the fabric during chemical finishing using padding technique. The GSM of the fabric before and after padding (without drying) is 150 and 300.

(A) 150%

(B) 75%

🇷) 100%

(D) 125%

160. Silk-like brilliance to cotton fabrics can be obtained using.

- (A) Swizzing Calendering
- (B) Schreiner Calendering
- (C) Friction Calendering

(D) Chasing Calendering

161. The modifications taking place during treatment of cotton fabric with nonionic softners are

- (A) Hard, Smooth but yellowing
- (B) Soft, Smooth but yellowing
- Soft, Smooth and non yellowing
- (D) Hard, Smooth and non yellowing

162.		type of dyeing machin	e, the	material is stationery but the liquor is			
		•		Post and desired			
	(A)	Jigger dyeing	(B)	Package dyeing			
	(C)	Soft flow dyeing	(D)	Winch dyeing			
163.	The critical temperature range which requires control to obtain levelling property in dyeing of polyester with disperse dyes using HTHP method is						
	(A)	80 – 180°C	(B)	90 – 120°C			
	(C)	130 – 160°C	(D)	60 – 90°C			
164.	Why	Why ice temperature is to be maintained during diazotisation reaction?					
	(A)						
•	(B)						
		to prevent the decomposition of diazotised salt					
	(D)						
165.	The	role of alkali in fixation of reactive	dve m	olecules with cellulose is			
200.	(A)	· · · · · · · · · · · · · · · · · · ·					
	(11)	to neutralise the liberated acid					
	(C)	to enhance the hydrolysis reaction					
	(D)						
	(D) .	to improve the solubility of dye					
166.	Which one of the following class of reactive dyes is reacting with cellulose fibres by means of additive method?						
	(A)	Monochlorotriazine dye	(B)	Dichlorotriazine dye			
	(C)	Hot brand dyes	(2)	Vinyl sulphone dye			
167.		The optimum concentration of sodium hydroxide solution preferred for mercerization of cotton fabric is					
	(A)_	18° – 22° Tw	(B)	72° – 76° Tw			
	6	52° – 54° Tw	(D)	8° – 10° Tw			

168. Which one of the pH range is preferred for bleaching of cotton with sodium hypochlorite solution?

(10-11)

(B) 6-8

(C) 3-4

(D) 12-13

169.	Flat patter making is not based on the following pattern making principle?					
	(1)	Balancing	(B)	Dart manipulation		
	(C)	Added fullness	. (D)	Contouring		
170.		varp knitting, ————————————————————————————————————	a shog,	across one needle hook and forms the		
	(A)	Closed lap	(B)	Open lap		
	1	Over lap	(D)	Under lap		
171.	loops	•	having	wales containing both face and back		
	(A)	Plain	(B)	Rib		
	(C)	Interlock	(d)	Purl		
172.	The	2 imes 2 rib version of half-cardigan i	s terme	d as		
	(A)	Royal rib	(B)	Polka rib		
	(6)	Fisherman's rib	(D)	Sweater stitch		
173.		loops reduce fabric len	gth and	l length-wise elasticity.		
	(A)	Knit	(3)	Tuck		
	(C)	Float	(D)	Cable		
174.	.#	stitch fabrics are narre	ower th	an equivalent all – knit fabrics.		
	(11)	miss	(B)	tuck		
	(C)	cable	(D)	closed		
175.	In ————, guide bar laps progressively in the same direction for a minimum of two consecutive courses					
	(A)	pillar stitches	(B)	tricot lapping		
•	(6)	atlas lapping	(D)	miss lapping		
176.		is the most widely used as ———————————————————————————————————	sed nee	dle in weft knitting and is sometimes		
-		Latch needle and automatic	(B)	Latch needle and High speed		
	(C)	Compound needle and automatic	(D)	Compound needle and highspeed		

resistant organic fibres choose the correct answer from the below.						
(A)	Acetate	(B)	Modacrylic			
(C)	PEK		PAN-OX			
	- ,	n materials	used to built into internal structure of			
(A)	Nylon 6 and polyester	(B)	Nylon 6,6 and polyester			
(C)	Low tenacity viscose and po	olyester 🖤	High tenacity viscose and polyester			
Usually — fabric is used for rotary filters and filter presses where abrasion is critical						
(A)	rayon woven	(B)	needle punched nylon			
401	poly propylene woven	(D)	needle punched polyester			
Mos	Most widely used weave designs in liquid filtration					
(i)	plain					
(ii)	twill					
(iii)	satin					
(A)	(i) and (ii) only	•	• •			
(B)	(ii) and (iii) only					
(0)	(i) and (iii) only					
(D)	(ii) only	,				
	fibres are suitable	e for hot gas	filtration around 1000°C			
(A)	Polyester	(B)	Acrylic			
(C)	Nylon	46	Ceramic			
	is the most widely used fibre in gas filtration					
(A)	viscose	(B)	ceramic			
(C)	carbon		polyester			
Mos	tly ———— fabrics are	e used in liqu	uid filtration			
(A)	Spun bonded	(B)_	Spun laid			
(C)	Stitch bonded	. 7(0)	Needle punched			
	resi (A) (C) In t tyre (A) (C) Usu abra (A) (ii) (iii) (iii) (A) (C) (A) (C) (A) (C) (A) (C) (A) (C)	resistant organic fibres choose the (A) Acetate (C) PEK In tyre-cord applications, the yar tyres for adverse conditions is — (A) Nylon 6 and polyester (C) Low tenacity viscose and polyester (C) PEK In tyre-cord applications, the yar tyre type and t	resistant organic fibres choose the correct ans (A) Acetate (B) (C) PEK In tyre-cord applications, the yarn materials tyres for adverse conditions is (A) Nylon 6 and polyester (B) (C) Low tenacity viscose and polyester (P) Usually fabric is used for a abrasion is critical (A) rayon woven (B) (D) poly propylene woven (D) Most widely used weave designs in liquid filtr (i) plain (ii) twill (iii) satin (A) (i) and (ii) only (B) (ii) and (iii) only (C) Nylon — fibres are suitable for hot gas (A) Polyester (B) (C) Nylon — is the most widely used fibre in the most widely used fibre in the most widely used in liquid filtr (A) viscose (B) (C) carbon Mostly fabrics are used in liquid filtr (A) Spun bonded (B)			

CETET/19

[Turn over

Structure element in felt looping is

Loose fibers

Plugs **(B)**

Loops

(D) Balls

185.. The type of non woven fabric finishing that comprises of coloration, printing and scouring processes is

Chemical finish (A)

Mechanical finish

Surface finish (C)

Wet finish

186. In calendar bonding system, the heat conductivity of polyamide is -W/m-K for uniform nonwoven web formation.

0.48

0.36

0.22

(D) 0.04

187. Characteristics of web formation stage of manufacture of spun laid nonwovens is

- mechanical and thermal
- (B) physico-chemical and aerodynamic

- - aerodynamic and electrostatic
- (D) hydrodynamic and thermal

In spun bonding, through put per nozzle (m) is determined by

 $[d_A - nozzle diameter, mm$

 V_A – emerging velocity, m/min

 ρ_p – polymer density, g/cm³]

(A)
$$m = \frac{d_A^2 \cdot \pi \cdot V_A^2 \cdot \rho_p}{4}.$$

(B)
$$m = \frac{d_A \cdot \pi \cdot V_A^2 \cdot \rho_p}{4}$$

(C)
$$m = \frac{d_A \cdot \pi \cdot V_A \cdot \rho_P^2}{4}$$

$$m = \frac{d_A^2 \cdot \pi \cdot V_A \cdot \rho_p}{4}$$

- 189. Find the correct statements with respect to Sexual Harassment of women at workplace Act 2013.
 - (I) Every employer should constitute a Internal Complaints Committee at workplace.
 - (II) The presiding officer who shall be a woman of senior level at workplace amongst the employees.
 - (III) Two or more members' from the employees.
 - (IV) Two members from a NGO or Associations committed to the cause of women.
 - (A) (I), (II)
 - (I), (II), (III)
 - (C) (III), (IV)
 - (D) (II), (III), (IV)
- 190. The employees' provident funds and miscellaneous provisions Act was enacted in the year
 - (A) 1961
 - (B) 1954
 - (C) 1956
 - (1) 1952
- 191. The type of marketing strategy used in marketing segmentation that has the strategy of "one product, one marketing mix and one segment".
 - Concentrated marketing
 - (B) Differentiated marketing
 - (C) Undifferentiated marketing
 - (D) Particularised marketing

- (A) Selling
- Societal Marketing
- (C) Selling and Marketing
- (D) Production

193.	If th	e total of production cost is Rs. 40,000/-	and 20% of s	sale price is th	ie profit	to be	
	added to cost, what is the profit?						
	(A)	Rs. 6,000					
•	(B)	Rs. 8,000				. •	
	S	Rs. 10,000					
	(D)	Rs. 12,000					
194.	Whi	ch of the following is a best example of a	variable cost	? •		•	
	(A)	Interest on Capital		• .	•	٠.	
	(B)	Depreciation on Machinery	•				
,	(C)	Cost of Materials		•.			
	(D)	Rent and taxes					
				* · · · ·		•	
195.	The	The statement of an organisation which presents the financial position at the end of					
	fisca	l period is ———.			•		
•	(A)	Balance sheet statement					
	(B)	Cash flow statement		•			
	(C)	Income statement					
	(D)	Retained earnings statement					
	~ 1				•	11	
196.	-	Calculate Basic time for an operator working on an operation using single needle lock stich machine with observed single cycle time of 0.85 and Rating factor of 0.70.					
			time of 0.00	anu namę ia	ctor or o.	10.	
	(A)	1.550					
	(B)	1.214					
,	(C)	0.595					
	(D)	0.150			,		
		•					

CETET/19

197.	"There will be no progress if you keep on doing things exactly the same way all the					
	ome	". One of the following concepts based on the above cited belief.				
	(D)	Kaizen				
	(B)	5S				
	(C)	TQM (Total Quality Management)				
	(D)	Six Sigma				
198.	One of the following is incorrect on the principles of Total Quality Management.					
	(A)	Delight The Customer				
	(B)	Continuous Improvement				
	(C)	People Based Management				
,	AS)	Management by theory and forecasting				
199.		ough Kaizen, high performance levels at — investments will be				
	_	ible either in the workplace or at home.				
•	(A)	High				
	√ (5)	Low				
	(C)	Meagre				
	(D)	Nil				
200.		term 'Seiri' coined in the 5 S system is a Japanese word that describes the action followed in an organisation.				
	(A)	Shine				
	(3)	Sort				
	(C)	Standardize				
	(D)	Sustain				

CETET/19 [Turn over

CETET/19 40 △